Abstract:Network-controlled repeater (NCR) has been recently considered as a study-item in 3GPP Release 18, and the discussions are continuing in a work-item. In this paper, we introduce the concept of NCRs, as a possible low-complexity device to support for network densification and compare the performance of the NCRs with those achieved by reconfigurable intelligent surfaces (RISs). The results are presented for the cases with different beamforming methods and hardware impairment models of the RIS. Moreover, we introduce the objectives of the 3GPP Release 18 NCR work-item and study the effect of different parameters on the performance of NCR-assisted networks. As we show, with a proper deployment, the presence of NCRs/RISs can improve the network performance considerably.
Abstract:Internet-of-vehicle (IoV) is a general concept referring to, e.g., autonomous drive based vehicle-to-everything (V2X) communications or moving relays. Here, high rate and reliability demands call for advanced multi-antenna techniques and millimeter-wave (mmw) based communications. However, the sensitivity of the mmw signals to blockage may limit the system performance, especially in highways/rural areas with limited building reflectors/base station deployments and high-speed devices. To avoid the blockage, various techniques have been proposed among which reconfigurable intelligent surface (RIS) is a candidate. RIS, however, has been mainly of interest in stationary/low mobility scenarios, due to the associated channel state information acquisition and beam management overhead as well as imperfect reflection. In this article, we study the potentials and challenges of RIS-assisted dynamic blockage avoidance in IoV networks. Particularly, by designing region-based RIS pre-selection as well as blockage prediction schemes, we show that RIS-assisted communication has the potential to boost the performance of IoV networks. However, there are still issues to be solved before RIS can be practically deployed in IoV networks.