Abstract:Finding answers related to a pandemic of a novel disease raises new challenges for information seeking and retrieval, as the new information becomes available gradually. TREC COVID search track aims to assist in creating search tools to aid scientists, clinicians, policy makers and others with similar information needs in finding reliable answers from the scientific literature. We experiment with different ranking algorithms as part of our participation in this challenge. We propose a novel method for neural retrieval, and demonstrate its effectiveness on the TREC COVID search.