Abstract:In this study, we address a gap in existing unsupervised domain adaptation approaches on LiDAR-based 3D object detection, which have predominantly concentrated on adapting between established, high-density autonomous driving datasets. We focus on sparser point clouds, capturing scenarios from different perspectives: not just from vehicles on the road but also from mobile robots on sidewalks, which encounter significantly different environmental conditions and sensor configurations. We introduce Unsupervised Adversarial Domain Adaptation for 3D Object Detection (UADA3D). UADA3D does not depend on pre-trained source models or teacher-student architectures. Instead, it uses an adversarial approach to directly learn domain-invariant features. We demonstrate its efficacy in various adaptation scenarios, showing significant improvements in both self-driving car and mobile robot domains. Our code is open-source and will be available soon.
Abstract:Maps play a key role in rapidly developing area of autonomous driving. We survey the literature for different map representations and find that while the world is three-dimensional, it is common to rely on 2D map representations in order to meet real-time constraints. We believe that high levels of situation awareness require a 3D representation as well as the inclusion of semantic information. We demonstrate that our recently presented hierarchical 3D grid mapping framework UFOMap meets the real-time constraints. Furthermore, we show how it can be used to efficiently support more complex functions such as calculating the occluded parts of space and accumulating the output from a semantic segmentation network.
Abstract:Fuzzy Cognitive Maps (FCMs) are computational models that represent how factors (nodes) change over discrete interactions based on causal impacts (weighted directed edges) from other factors. This approach has traditionally been used as an aggregate, similarly to System Dynamics, to depict the functioning of a system. There has been a growing interest in taking this aggregate approach at the individual-level, for example by equipping each agent of an Agent-Based Model with its own FCM to express its behavior. Although frameworks and studies have already taken this approach, an ongoing limitation has been the difficulty of creating as many FCMs as there are individuals. Indeed, current studies have been able to create agents whose traits are different, but whose decision-making modules are often identical, thus limiting the behavioral heterogeneity of the simulated population. In this paper, we address this limitation by using Genetic Algorithms to create one FCM for each agent, thus providing the means to automatically create a virtual population with heterogeneous behaviors. Our algorithm builds on prior work from Stach and colleagues by introducing additional constraints into the process and applying it over longitudinal, individual-level data. A case study from a real-world intervention on nutrition confirms that our approach can generate heterogeneous agents that closely follow the trajectories of their real-world human counterparts. Future works include technical improvements such as lowering the computational time of the approach, or case studies in computational intelligence that use our virtual populations to test new behavior change interventions.