Abstract:Remote sensing change detection between bi-temporal images receives growing concentration from researchers. However, comparing two bi-temporal images for detecting changes is challenging, as they demonstrate different appearances. In this paper, we propose a dual attentive generative adversarial network for achieving very high-resolution remote sensing image change detection tasks, which regards the detection model as a generator and attains the optimal weights of the detection model without increasing the parameters of the detection model through generative-adversarial strategy, boosting the spatial contiguity of predictions. Moreover, We design a multi-level feature extractor for effectively fusing multi-level features, which adopts the pre-trained model to extract multi-level features from bi-temporal images and introduces aggregate connections to fuse them. To strengthen the identification of multi-scale objects, we propose a multi-scale adaptive fusion module to adaptively fuse multi-scale features through various receptive fields and design a context refinement module to explore contextual dependencies. Moreover, the DAGAN framework utilizes the 4-layer convolution network as a discriminator to identify whether the synthetic image is fake or real. Extensive experiments represent that the DAGAN framework has better performance with 85.01% mean IoU and 91.48% mean F1 score than advanced methods on the LEVIR dataset.
Abstract:Most deep learning methods that achieve high segmentation accuracy require deep network architectures that are too heavy and complex to run on embedded devices with limited storage and memory space. To address this issue, this paper proposes an efficient Generative Adversarial Transfomer (GATrans) for achieving high-precision semantic segmentation while maintaining an extremely efficient size. The framework utilizes a Global Transformer Network (GTNet) as the generator, efficiently extracting multi-level features through residual connections. GTNet employs global transformer blocks with progressively linear computational complexity to reassign global features based on a learnable similarity function. To focus on object-level and pixel-level information, the GATrans optimizes the objective function by combining structural similarity losses. We validate the effectiveness of our approach through extensive experiments on the Vaihingen dataset, achieving an average F1 score of 90.17% and an overall accuracy of 91.92%.