Abstract:We consider the problem of releasing a sparse histogram under $(\varepsilon, \delta)$-differential privacy. The stability histogram independently adds noise from a Laplace or Gaussian distribution to the non-zero entries and removes those noisy counts below a threshold. Thereby, the introduction of new non-zero values between neighboring histograms is only revealed with probability at most $\delta$, and typically, the value of the threshold dominates the error of the mechanism. We consider the variant of the stability histogram with Gaussian noise. Recent works ([Joseph and Yu, COLT '24] and [Lebeda, SOSA '25]) reduced the error for private histograms using correlated Gaussian noise. However, these techniques can not be directly applied in the very sparse setting. Instead, we adopt Lebeda's technique and show that adding correlated noise to the non-zero counts only allows us to reduce the magnitude of noise when we have a sparsity bound. This, in turn, allows us to use a lower threshold by up to a factor of $1/2$ compared to the non-correlated noise mechanism. We then extend our mechanism to a setting without a known bound on sparsity. Additionally, we show that correlated noise can give a similar improvement for the more practical discrete Gaussian mechanism.
Abstract:We study the problem of privately releasing an approximate minimum spanning tree (MST). Given a graph $G = (V, E, \vec{W})$ where $V$ is a set of $n$ vertices, $E$ is a set of $m$ undirected edges, and $ \vec{W} \in \mathbb{R}^{|E|} $ is an edge-weight vector, our goal is to publish an approximate MST under edge-weight differential privacy, as introduced by Sealfon in PODS 2016, where $V$ and $E$ are considered public and the weight vector is private. Our neighboring relation is $\ell_\infty$-distance on weights: for a sensitivity parameter $\Delta_\infty$, graphs $ G = (V, E, \vec{W}) $ and $ G' = (V, E, \vec{W}') $ are neighboring if $\|\vec{W}-\vec{W}'\|_\infty \leq \Delta_\infty$. Existing private MST algorithms face a trade-off, sacrificing either computational efficiency or accuracy. We show that it is possible to get the best of both worlds: With a suitable random perturbation of the input that does not suffice to make the weight vector private, the result of any non-private MST algorithm will be private and achieves a state-of-the-art error guarantee. Furthermore, by establishing a connection to Private Top-k Selection [Steinke and Ullman, FOCS '17], we give the first privacy-utility trade-off lower bound for MST under approximate differential privacy, demonstrating that the error magnitude, $\tilde{O}(n^{3/2})$, is optimal up to logarithmic factors. That is, our approach matches the time complexity of any non-private MST algorithm and at the same time achieves optimal error. We complement our theoretical treatment with experiments that confirm the practicality of our approach.
Abstract:Motivated by applications in clustering and synthetic data generation, we consider the problem of releasing a minimum spanning tree (MST) under edge-weight differential privacy constraints where a graph topology $G=(V,E)$ with $n$ vertices and $m$ edges is public, the weight matrix $\vec{W}\in \mathbb{R}^{n \times n}$ is private, and we wish to release an approximate MST under $\rho$-zero-concentrated differential privacy. Weight matrices are considered neighboring if they differ by at most $\Delta_\infty$ in each entry, i.e., we consider an $\ell_\infty$ neighboring relationship. Existing private MST algorithms either add noise to each entry in $\vec{W}$ and estimate the MST by post-processing or add noise to weights in-place during the execution of a specific MST algorithm. Using the post-processing approach with an efficient MST algorithm takes $O(n^2)$ time on dense graphs but results in an additive error on the weight of the MST of magnitude $O(n^2\log n)$. In-place algorithms give asymptotically better utility, but the running time of existing in-place algorithms is $O(n^3)$ for dense graphs. Our main result is a new differentially private MST algorithm that matches the utility of existing in-place methods while running in time $O(m + n^{3/2}\log n)$ for fixed privacy parameter $\rho$. The technical core of our algorithm is an efficient sublinear time simulation of Report-Noisy-Max that works by discretizing all edge weights to a multiple of $\Delta_\infty$ and forming groups of edges with identical weights. Specifically, we present a data structure that allows us to sample a noisy minimum weight edge among at most $O(n^2)$ cut edges in $O(\sqrt{n} \log n)$ time. Experimental evaluations support our claims that our algorithm significantly improves previous algorithms either in utility or running time.