Abstract:The Bellman equation and its continuous form, the Hamilton-Jacobi-Bellman (HJB) equation, are ubiquitous in reinforcement learning (RL) and control theory. However, these equations quickly become intractable for systems with high-dimensional states and nonlinearity. This paper explores the connection between the data-driven Koopman operator and Markov Decision Processes (MDPs), resulting in the development of two new RL algorithms to address these limitations. We leverage Koopman operator techniques to lift a nonlinear system into new coordinates where the dynamics become approximately linear, and where HJB-based methods are more tractable. In particular, the Koopman operator is able to capture the expectation of the time evolution of the value function of a given system via linear dynamics in the lifted coordinates. By parameterizing the Koopman operator with the control actions, we construct a ``Koopman tensor'' that facilitates the estimation of the optimal value function. Then, a transformation of Bellman's framework in terms of the Koopman tensor enables us to reformulate two max-entropy RL algorithms: soft value iteration and soft actor-critic (SAC). This highly flexible framework can be used for deterministic or stochastic systems as well as for discrete or continuous-time dynamics. Finally, we show that these Koopman Assisted Reinforcement Learning (KARL) algorithms attain state-of-the-art (SOTA) performance with respect to traditional neural network-based SAC and linear quadratic regulator (LQR) baselines on four controlled dynamical systems: a linear state-space system, the Lorenz system, fluid flow past a cylinder, and a double-well potential with non-isotropic stochastic forcing.
Abstract:Recent developments in Machine Learning approaches for modelling physical systems have begun to mirror the past development of numerical methods in the computational sciences. In this survey, we begin by providing an example of this with the parallels between the development trajectories of graph neural network acceleration for physical simulations and particle-based approaches. We then give an overview of simulation approaches, which have not yet found their way into state-of-the-art Machine Learning methods and hold the potential to make Machine Learning approaches more accurate and more efficient. We conclude by presenting an outlook on the potential of these approaches for making Machine Learning models for science more efficient.