Abstract:LTLf synthesis is the automated construction of a reactive system from a high-level description, expressed in LTLf, of its finite-horizon behavior. So far, the conversion of LTLf formulas to deterministic finite-state automata (DFAs) has been identified as the primary bottleneck to the scalabity of synthesis. Recent investigations have also shown that the size of the DFA state space plays a critical role in synthesis as well. Therefore, effective resolution of the bottleneck for synthesis requires the conversion to be time and memory performant, and prevent state-space explosion. Current conversion approaches, however, which are based either on explicit-state representation or symbolic-state representation, fail to address these necessities adequately at scale: Explicit-state approaches generate minimal DFA but are slow due to expensive DFA minimization. Symbolic-state representations can be succinct, but due to the lack of DFA minimization they generate such large state spaces that even their symbolic representations cannot compensate for the blow-up. This work proposes a hybrid representation approach for the conversion. Our approach utilizes both explicit and symbolic representations of the state-space, and effectively leverages their complementary strengths. In doing so, we offer an LTLf to DFA conversion technique that addresses all three necessities, hence resolving the bottleneck. A comprehensive empirical evaluation on conversion and synthesis benchmarks supports the merits of our hybrid approach.
Abstract:LTLf synthesis is the process of finding a strategy that satisfies a linear temporal specification over finite traces. An existing solution to this problem relies on a reduction to a DFA game. In this paper, we propose a symbolic framework for LTLf synthesis based on this technique, by performing the computation over a representation of the DFA as a boolean formula rather than as an explicit graph. This approach enables strategy generation by utilizing the mechanism of boolean synthesis. We implement this symbolic synthesis method in a tool called Syft, and demonstrate by experiments on scalable benchmarks that the symbolic approach scales better than the explicit one.