Abstract:With the recent advancements in wireless technologies, forecasting electromagnetic field (EMF) exposure has become critical to enable proactive network spectrum and power allocation, as well as network deployment planning. In this paper, we develop a deep learning (DL) time series forecasting framework referred to as \textit{EMForecaster}. The proposed DL architecture employs patching to process temporal patterns at multiple scales, complemented by reversible instance normalization and mixing operations along both temporal and patch dimensions for efficient feature extraction. We augment {EMForecaster} with a conformal prediction mechanism, which is independent of the data distribution, to enhance the trustworthiness of model predictions via uncertainty quantification of forecasts. This conformal prediction mechanism ensures that the ground truth lies within a prediction interval with target error rate $\alpha$, where $1-\alpha$ is referred to as coverage. However, a trade-off exists, as increasing coverage often results in wider prediction intervals. To address this challenge, we propose a new metric called the \textit{Trade-off Score}, that balances trustworthiness of the forecast (i.e., coverage) and the width of prediction interval. Our experiments demonstrate that EMForecaster achieves superior performance across diverse EMF datasets, spanning both short-term and long-term prediction horizons. In point forecasting tasks, EMForecaster substantially outperforms current state-of-the-art DL approaches, showing improvements of 53.97\% over the Transformer architecture and 38.44\% over the average of all baseline models. EMForecaster also exhibits an excellent balance between prediction interval width and coverage in conformal forecasting, measured by the tradeoff score, showing marked improvements of 24.73\% over the average baseline and 49.17\% over the Transformer architecture.
Abstract:Installing more base stations (BSs) into the existing cellular infrastructure is an essential way to provide greater network capacity and higher data rate in the 5th-generation cellular networks (5G). However, a non-negligible amount of population is concerned that such network densification will generate a notable increase in exposure to electric and magnetic fields (EMF) over the territory. In this paper, we analyze the downlink, uplink, and joint downlink&uplink exposure induced by the radiation from BSs and personal user equipment (UE), respectively, in terms of the received power density and exposure index. In our analysis, we consider the EMF restrictions set by the regulatory authorities such as the minimum distance between restricted areas (e.g., schools and hospitals) and BSs, and the maximum permitted exposure. Exploiting tools from stochastic geometry, mathematical expressions for the coverage probability and statistical EMF exposure are derived and validated. Tuning the system parameters such as the BS density and the minimum distance from a BS to restricted areas, we show a trade-off between reducing the population's exposure to EMF and enhancing the network coverage performance. Then, we formulate optimization problems to maximize the performance of the EMF-aware cellular network while ensuring that the EMF exposure complies with the standard regulation limits with high probability. For instance, the exposure from BSs is two orders of magnitude less than the maximum permissible level when the density of BSs is less than 20 BSs/km2.
Abstract:The deployment of 5G networks is sometimes questioned due to the impact of ElectroMagnetic Field (EMF) generated by Radio Base Station (RBS) on users. The goal of this work is to analyze such issue from a novel perspective, by comparing RBS EMF against exposure generated by 5G smartphones in commercial deployments. The measurement of exposure from 5G is hampered by several implementation aspects, such as dual connectivity between 4G and 5G, spectrum fragmentation, and carrier aggregation. To face such issues, we deploy a novel framework, called 5G-EA, tailored to the assessment of smartphone and RBS exposure through an innovative measurement algorithm, able to remotely control a programmable spectrum analyzer. Results, obtained in both outdoor and indoor locations, reveal that smartphone exposure (upon generation of uplink traffic) dominates over the RBS one. Moreover, Line-of-Sight locations experience a reduction of around one order of magnitude on the overall exposure compared to Non-Line-of-Sight ones. In addition, 5G exposure always represents a small share (up to 28%) compared to 4G EMF.