Abstract:With the recent advancements in wireless technologies, forecasting electromagnetic field (EMF) exposure has become critical to enable proactive network spectrum and power allocation, as well as network deployment planning. In this paper, we develop a deep learning (DL) time series forecasting framework referred to as \textit{EMForecaster}. The proposed DL architecture employs patching to process temporal patterns at multiple scales, complemented by reversible instance normalization and mixing operations along both temporal and patch dimensions for efficient feature extraction. We augment {EMForecaster} with a conformal prediction mechanism, which is independent of the data distribution, to enhance the trustworthiness of model predictions via uncertainty quantification of forecasts. This conformal prediction mechanism ensures that the ground truth lies within a prediction interval with target error rate $\alpha$, where $1-\alpha$ is referred to as coverage. However, a trade-off exists, as increasing coverage often results in wider prediction intervals. To address this challenge, we propose a new metric called the \textit{Trade-off Score}, that balances trustworthiness of the forecast (i.e., coverage) and the width of prediction interval. Our experiments demonstrate that EMForecaster achieves superior performance across diverse EMF datasets, spanning both short-term and long-term prediction horizons. In point forecasting tasks, EMForecaster substantially outperforms current state-of-the-art DL approaches, showing improvements of 53.97\% over the Transformer architecture and 38.44\% over the average of all baseline models. EMForecaster also exhibits an excellent balance between prediction interval width and coverage in conformal forecasting, measured by the tradeoff score, showing marked improvements of 24.73\% over the average baseline and 49.17\% over the Transformer architecture.
Abstract:While the majority of time series classification research has focused on modeling fixed-length sequences, variable-length time series classification (VTSC) remains critical in healthcare, where sequence length may vary among patients and events. To address this challenge, we propose $\textbf{S}$tochastic $\textbf{S}$parse $\textbf{S}$ampling (SSS), a novel VTSC framework developed for medical time series. SSS manages variable-length sequences by sparsely sampling fixed windows to compute local predictions, which are then aggregated and calibrated to form a global prediction. We apply SSS to the task of seizure onset zone (SOZ) localization, a critical VTSC problem requiring identification of seizure-inducing brain regions from variable-length electrophysiological time series. We evaluate our method on the Epilepsy iEEG Multicenter Dataset, a heterogeneous collection of intracranial electroencephalography (iEEG) recordings obtained from four independent medical centers. SSS demonstrates superior performance compared to state-of-the-art (SOTA) baselines across most medical centers, and superior performance on all out-of-distribution (OOD) unseen medical centers. Additionally, SSS naturally provides post-hoc insights into local signal characteristics related to the SOZ, by visualizing temporally averaged local predictions throughout the signal.