Abstract:The growing complexity of radar signals demands responsive and accurate detection systems that can operate efficiently on resource-constrained edge devices. Existing models, while effective, often rely on substantial computational resources and large datasets, making them impractical for edge deployment. In this work, we propose an ultralight hybrid neural network optimized for edge applications, delivering robust performance across unfavorable signal-to-noise ratios (mean accuracy of 96.3% at 0 dB) using less than 100 samples per class, and significantly reducing computational overhead.
Abstract:Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.