Abstract:As human space exploration evolves toward longer voyages farther from our home planet, in-situ resource utilization (ISRU) becomes increasingly important. Haptic teleoperations are one of the technologies by which such activities can be carried out remotely by humans, whose expertise is still necessary for complex activities. In order to perform precision tasks with effectiveness, the operator must experience ease of use and accuracy. The same features are demanded to reduce the complexity of the training procedures and the associated learning time for operators without a specific background in robotic teleoperations. Haptic teleoperation systems, that allow for a natural feeling of forces, need to cope with the trade-off between accurate movements and workspace extension. Clearly, both of them are required for typical ISRU tasks. In this work, we develop a new concept of operations and suitable human-robot interfaces to achieve sample collection and assembly with ease of use and accuracy. In the proposed operational concept, the teleoperation space is extended by executing automated trajectories, offline planned at the control station. In three different experimental scenarios, we validate the end-to-end system involving the control station and the robotic asset, by assessing the contribution of haptics to mission success, the system robustness to consistent delays, and the ease of training new operators.
Abstract:Haptic teleoperations play a key role in extending human capabilities to perform complex tasks remotely, employing a robotic system. The impact of haptics is far-reaching and can improve the sensory awareness and motor accuracy of the operator. In this context, a key challenge is attaining a natural, stable and safe haptic human-robot interaction. Achieving these conflicting requirements is particularly crucial for complex procedures, e.g. medical ones. To address this challenge, in this work we develop a novel haptic bilateral teleoperation system (HBTS), featuring a virtualized force feedback, based on the motion error generated by an admittance controlled robot. This approach allows decoupling the force rendering system from the control of the interaction: the rendered force is assigned with the desired dynamics, while the admittance control parameters are separately tuned to maximize interaction performance. Furthermore, recognizing the necessity to limit the forces exerted by the robot on the environment, to ensure a safe interaction, we embed a saturation strategy of the motion references provided by the haptic device to admittance control. We validate the different aspects of the proposed HBTS, through a teleoperated blackboard writing experiment, against two other architectures. The results indicate that the proposed HBTS improves the naturalness of teleoperation, as well as safety and accuracy of the interaction.