Abstract:Due to the continuous change in operational data, AIOps solutions suffer from performance degradation over time. Although periodic retraining is the state-of-the-art technique to preserve the failure prediction AIOps models' performance over time, this technique requires a considerable amount of labeled data to retrain. In AIOps obtaining label data is expensive since it requires the availability of domain experts to intensively annotate it. In this paper, we present McUDI, a model-centric unsupervised degradation indicator that is capable of detecting the exact moment the AIOps model requires retraining as a result of changes in data. We further show how employing McUDI in the maintenance pipeline of AIOps solutions can reduce the number of samples that require annotations with 30k for job failure prediction and 260k for disk failure prediction while achieving similar performance with periodic retraining.
Abstract:Anomaly detection techniques are essential in automating the monitoring of IT systems and operations. These techniques imply that machine learning algorithms are trained on operational data corresponding to a specific period of time and that they are continuously evaluated on newly emerging data. Operational data is constantly changing over time, which affects the performance of deployed anomaly detection models. Therefore, continuous model maintenance is required to preserve the performance of anomaly detectors over time. In this work, we analyze two different anomaly detection model maintenance techniques in terms of the model update frequency, namely blind model retraining and informed model retraining. We further investigate the effects of updating the model by retraining it on all the available data (full-history approach) and on only the newest data (sliding window approach). Moreover, we investigate whether a data change monitoring tool is capable of determining when the anomaly detection model needs to be updated through retraining.
Abstract:As machine learning models increasingly replace traditional business logic in the production system, their lifecycle management is becoming a significant concern. Once deployed into production, the machine learning models are constantly evaluated on new streaming data. Given the continuous data flow, shifting data, also known as concept drift, is ubiquitous in such settings. Concept drift usually impacts the performance of machine learning models, thus, identifying the moment when concept drift occurs is required. Concept drift is identified through concept drift detectors. In this work, we assess the reliability of concept drift detectors to identify drift in time by exploring how late are they reporting drifts and how many false alarms are they signaling. We compare the performance of the most popular drift detectors belonging to two different concept drift detector groups, error rate-based detectors and data distribution-based detectors. We assess their performance on both synthetic and real-world data. In the case of synthetic data, we investigate the performance of detectors to identify two types of concept drift, abrupt and gradual. Our findings aim to help practitioners understand which drift detector should be employed in different situations and, to achieve this, we share a list of the most important observations made throughout this study, which can serve as guidelines for practical usage. Furthermore, based on our empirical results, we analyze the suitability of each concept drift detection group to be used as alarming system.