Abstract:Autonomous robots would benefit a lot by gaining the ability to manipulate their environment to solve path planning tasks, known as the Navigation Among Movable Obstacle (NAMO) problem. In this paper, we present a deep reinforcement learning approach for solving NAMO locally, near narrow passages. We train parallel agents in physics simulation using an Advantage Actor-Critic based algorithm with a multi-modal neural network. We present an online policy that is able to push obstacles in a non-axial-aligned fashion, react to unexpected obstacle dynamics in real-time, and solve the local NAMO problem. Experimental validation in simulation shows that the presented approach generalises to unseen NAMO problems in unknown environments. We further demonstrate the implementation of the policy on a real quadrupedal robot, showing that the policy can deal with real-world sensor noises and uncertainties in unseen NAMO tasks.