Abstract:Indoor human positioning has become increasingly important for applications such as health monitoring, breath monitoring, human identification, safety and rescue operations, and security surveillance. However, achieving robust indoor human positioning remains challenging due to various constraints. Numerous attempts have been made in the literature to develop efficient indoor positioning systems (IPSs), with a growing focus on machine learning (ML) based techniques. This paper aims to compare and analyze current ML-based wireless techniques and approaches for indoor positioning, providing a comprehensive review of enabling technologies for human detection, positioning, and activity recognition. The study explores different input measurement data, including RSSI, TDOA, etc., for various IPSs. Key positioning techniques such as RSSI-based fingerprinting, Angle-based, and Time-based approaches are examined in conjunction with various ML methods. The survey compares the positioning accuracy, scalability, and algorithm complexity, with the goal of determining the suitable technology in various services. Finally, the paper compares distinct datasets focused on indoor localization, which have been published using diverse technologies. Overall, the paper presents a comprehensive comparison of existing techniques and localization models.
Abstract:Domain Generalization (DG) techniques have emerged as a popular approach to address the challenges of domain shift in Deep Learning (DL), with the goal of generalizing well to the target domain unseen during the training. In recent years, numerous methods have been proposed to address the DG setting, among which one popular approach is the adversarial learning-based methodology. The main idea behind adversarial DG methods is to learn domain-invariant features by minimizing a discrepancy metric. However, most adversarial DG methods use 0-1 loss based $\mathcal{H}\Delta\mathcal{H}$ divergence metric. In contrast, the margin loss-based discrepancy metric has the following advantages: more informative, tighter, practical, and efficiently optimizable. To mitigate this gap, this work proposes a novel adversarial learning DG algorithm, MADG, motivated by a margin loss-based discrepancy metric. The proposed MADG model learns domain-invariant features across all source domains and uses adversarial training to generalize well to the unseen target domain. We also provide a theoretical analysis of the proposed MADG model based on the unseen target error bound. Specifically, we construct the link between the source and unseen domains in the real-valued hypothesis space and derive the generalization bound using margin loss and Rademacher complexity. We extensively experiment with the MADG model on popular real-world DG datasets, VLCS, PACS, OfficeHome, DomainNet, and TerraIncognita. We evaluate the proposed algorithm on DomainBed's benchmark and observe consistent performance across all the datasets.
Abstract:Non-orthogonal multiple access (NOMA) is a promising multiple access technology to improve the throughput and spectral efficiency of the users for 5G and beyond cellular networks. Similarly, coordinated multi-point transmission and reception (CoMP) is an existing technology to improve the coverage of cell-edge users. Hence, NOMA along with CoMP can potentially enhance the throughput and coverage of the users. However, the order of implementation of CoMP and NOMA can have a significant impact on the system performance of Ultra-dense networks (UDNs). Motivated by this, we study the performance of the CoMP and NOMA based UDN by proposing two kinds of user grouping and pairing schemes that differ in the order in which CoMP and NOMA are performed for a group of users. Detailed simulation results are presented comparing the proposed schemes with the state-of-the-art systems with varying user and base station densities. Through numerical results, we show that the proposed schemes can be used to achieve a suitable coverage-throughout trade-off in UDNs.
Abstract:Non-orthogonal multiple access (NOMA) has been identified as one of the promising technologies to enhance the spectral efficiency and throughput for the 5G and beyond cellular networks. Alternatively, coordinated multi-point (CoMP) improves the cell edge users coverage. Thus, CoMP and NOMA can be used together to improve the overall coverage and throughput of the cell edge users. However, user grouping and pairing for CoMP-NOMA based cellular networks has not been suitably addressed in the existing literature. Motivated by this, we propose two user grouping and pairing schemes for a CoMP-NOMA based system. Both the schemes are compared in terms of overall throughput and coverage. Numerical results are presented for various densities of users, base stations, and CoMP thresholds. Moreover, the results are compared with the purely OMA-based benchmark system, NOMA only, and CoMP only systems. We show through simulation results that the proposed schemes offer a trade-off between throughput and coverage as compared to a purely NOMA or CoMP based system.