Abstract:Most recent head pose estimation (HPE) methods are dominated by the Euler angle representation. To avoid its inherent ambiguity problem of rotation labels, alternative quaternion-based and vector-based representations are introduced. However, they both are not visually intuitive, and often derived from equivocal Euler angle labels. In this paper, we present a novel single-stage keypoint-based method via an {\it intuitive} and {\it unconstrained} 2D cube representation for joint head detection and pose estimation. The 2D cube is an orthogonal projection of the 3D regular hexahedron label roughly surrounding one head, and itself contains the head location. It can reflect the head orientation straightforwardly and unambiguously in any rotation angle. Unlike the general 6-DoF object pose estimation, our 2D cube ignores the 3-DoF of head size but retains the 3-DoF of head pose. Based on the prior of equal side length, we can effortlessly obtain the closed-form solution of Euler angles from predicted 2D head cube instead of applying the error-prone PnP algorithm. In experiments, our proposed method achieves comparable results with other representative methods on the public AFLW2000 and BIWI datasets. Besides, a novel test on the CMU panoptic dataset shows that our method can be seamlessly adapted to the unconstrained full-view HPE task without modification.
Abstract:Each student matters, but it is hardly for instructors to observe all the students during the courses and provide helps to the needed ones immediately. In this paper, we present StuArt, a novel automatic system designed for the individualized classroom observation, which empowers instructors to concern the learning status of each student. StuArt can recognize five representative student behaviors (hand-raising, standing, sleeping, yawning, and smiling) that are highly related to the engagement and track their variation trends during the course. To protect the privacy of students, all the variation trends are indexed by the seat numbers without any personal identification information. Furthermore, StuArt adopts various user-friendly visualization designs to help instructors quickly understand the individual and whole learning status. Experimental results on real classroom videos have demonstrated the superiority and robustness of the embedded algorithms. We expect our system promoting the development of large-scale individualized guidance of students.