Abstract:Recent advances in structured 3D Gaussians for view-adaptive rendering, particularly through methods like Scaffold-GS, have demonstrated promising results in neural scene representation. However, existing approaches still face challenges in perceptual consistency and precise view-dependent effects. We present PEP-GS, a novel framework that enhances structured 3D Gaussians through three key innovations: (1) a Local-Enhanced Multi-head Self-Attention (LEMSA) mechanism that replaces spherical harmonics for more accurate view-dependent color decoding, and (2) Kolmogorov-Arnold Networks (KAN) that optimize Gaussian opacity and covariance functions for enhanced interpretability and splatting precision. (3) a Neural Laplacian Pyramid Decomposition (NLPD) that improves perceptual similarity across views. Our comprehensive evaluation across multiple datasets indicates that, compared to the current state-of-the-art methods, these improvements are particularly evident in challenging scenarios such as view-dependent effects, specular reflections, fine-scale details and false geometry generation.
Abstract:Underwater instance segmentation is a fundamental and critical step in various underwater vision tasks. However, the decline in image quality caused by complex underwater environments presents significant challenges to existing segmentation models. While the state-of-the-art USIS-SAM model has demonstrated impressive performance, it struggles to effectively adapt to feature variations across different channels in addressing issues such as light attenuation, color distortion, and complex backgrounds. This limitation hampers its segmentation performance in challenging underwater scenarios. To address these issues, we propose the MarineVision Adapter (MV-Adapter). This module introduces an adaptive channel attention mechanism that enables the model to dynamically adjust the feature weights of each channel based on the characteristics of underwater images. By adaptively weighting features, the model can effectively handle challenges such as light attenuation, color shifts, and complex backgrounds. Experimental results show that integrating the MV-Adapter module into the USIS-SAM network architecture further improves the model's overall performance, especially in high-precision segmentation tasks. On the USIS10K dataset, the module achieves improvements in key metrics such as mAP, AP50, and AP75 compared to competitive baseline models.