Abstract:Effective prediction of shale gas production is crucial for strategic reservoir development. However, in new shale gas blocks, two main challenges are encountered: (1) the occurrence of negative transfer due to insufficient data, and (2) the limited interpretability of deep learning (DL) models. To tackle these problems, we propose a novel transfer learning methodology that utilizes domain adaptation and physical constraints. This methodology effectively employs historical data from the source domain to reduce negative transfer from the data distribution perspective, while also using physical constraints to build a robust and reliable prediction model that integrates various types of data. The methodology starts by dividing the production data from the source domain into multiple subdomains, thereby enhancing data diversity. It then uses Maximum Mean Discrepancy (MMD) and global average distance measures to decide on the feasibility of transfer. Through domain adaptation, we integrate all transferable knowledge, resulting in a more comprehensive target model. Lastly, by incorporating drilling, completion, and geological data as physical constraints, we develop a hybrid model. This model, a combination of a multi-layer perceptron (MLP) and a Transformer (Transformer-MLP), is designed to maximize interpretability. Experimental validation in China's southwestern region confirms the method's effectiveness.
Abstract:Machine learning approaches are widely studied in the production prediction of CBM wells after hydraulic fracturing, but merely used in practice due to the low generalization ability and the lack of interpretability. A novel methodology is proposed in this article to discover the latent causality from observed data, which is aimed at finding an indirect way to interpret the machine learning results. Based on the theory of causal discovery, a causal graph is derived with explicit input, output, treatment and confounding variables. Then, SHAP is employed to analyze the influence of the factors on the production capability, which indirectly interprets the machine learning models. The proposed method can capture the underlying nonlinear relationship between the factors and the output, which remedies the limitation of the traditional machine learning routines based on the correlation analysis of factors. The experiment on the data of CBM shows that the detected relationship between the production and the geological/engineering factors by the presented method, is coincident with the actual physical mechanism. Meanwhile, compared with traditional methods, the interpretable machine learning models have better performance in forecasting production capability, averaging 20% improvement in accuracy.