Abstract:In this position paper, we argue that understanding the relation between structure in the data distribution and structure in trained models is central to AI alignment. First, we discuss how two neural networks can have equivalent performance on the training set but compute their outputs in essentially different ways and thus generalise differently. For this reason, standard testing and evaluation are insufficient for obtaining assurances of safety for widely deployed generally intelligent systems. We argue that to progress beyond evaluation to a robust mathematical science of AI alignment, we need to develop statistical foundations for an understanding of the relation between structure in the data distribution, internal structure in models, and how these structures underlie generalisation.
Abstract:Modern deep neural networks display striking examples of rich internal computational structure. Uncovering principles governing the development of such structure is a priority for the science of deep learning. In this paper, we explore the transient ridge phenomenon: when transformers are trained on in-context linear regression tasks with intermediate task diversity, they initially behave like ridge regression before specializing to the tasks in their training distribution. This transition from a general solution to a specialized solution is revealed by joint trajectory principal component analysis. Further, we draw on the theory of Bayesian internal model selection to suggest a general explanation for the phenomena of transient structure in transformers, based on an evolving tradeoff between loss and complexity. We empirically validate this explanation by measuring the model complexity of our transformers as defined by the local learning coefficient.
Abstract:We show that in-context learning emerges in transformers in discrete developmental stages, when they are trained on either language modeling or linear regression tasks. We introduce two methods for detecting the milestones that separate these stages, by probing the geometry of the population loss in both parameter space and function space. We study the stages revealed by these new methods using a range of behavioral and structural metrics to establish their validity.