Abstract:Machine learning (ML) underpins foundation models in finance, healthcare, and critical infrastructure, making them targets for data poisoning, model extraction, prompt injection, automated jailbreaking, and preference-guided black-box attacks that exploit model comparisons. Larger models can be more vulnerable to introspection-driven jailbreaks and cross-modal manipulation. Traditional cybersecurity lacks ML-specific threat modeling for foundation, multimodal, and RAG systems. Objective: Characterize ML security risks by identifying dominant TTPs, vulnerabilities, and targeted lifecycle stages. Methods: We extract 93 threats from MITRE ATLAS (26), AI Incident Database (12), and literature (55), and analyze 854 GitHub/Python repositories. A multi-agent RAG system (ChatGPT-4o, temp 0.4) mines 300+ articles to build an ontology-driven threat graph linking TTPs, vulnerabilities, and stages. Results: We identify unreported threats including commercial LLM API model stealing, parameter memorization leakage, and preference-guided text-only jailbreaks. Dominant TTPs include MASTERKEY-style jailbreaking, federated poisoning, diffusion backdoors, and preference optimization leakage, mainly impacting pre-training and inference. Graph analysis reveals dense vulnerability clusters in libraries with poor patch propagation. Conclusion: Adaptive, ML-specific security frameworks, combining dependency hygiene, threat intelligence, and monitoring, are essential to mitigate supply-chain and inference risks across the ML lifecycle.
Abstract:Since its release in November 2022, ChatGPT has shaken up Stack Overflow, the premier platform for developers' queries on programming and software development. Demonstrating an ability to generate instant, human-like responses to technical questions, ChatGPT has ignited debates within the developer community about the evolving role of human-driven platforms in the age of generative AI. Two months after ChatGPT's release, Meta released its answer with its own Large Language Model (LLM) called LLaMA: the race was on. We conducted an empirical study analyzing questions from Stack Overflow and using these LLMs to address them. This way, we aim to (ii) measure user engagement evolution with Stack Overflow over time; (ii) quantify the reliability of LLMs' answers and their potential to replace Stack Overflow in the long term; (iii) identify and understand why LLMs fails; and (iv) compare LLMs together. Our empirical results are unequivocal: ChatGPT and LLaMA challenge human expertise, yet do not outperform it for some domains, while a significant decline in user posting activity has been observed. Furthermore, we also discuss the impact of our findings regarding the usage and development of new LLMs.