Abstract:For end-to-end Automatic Speech Recognition (ASR) models, recognizing personal or rare phrases can be hard. A promising way to improve accuracy is through spelling correction (or rewriting) of the ASR lattice, where potentially misrecognized phrases are replaced with acoustically similar and contextually relevant alternatives. However, rewriting is challenging for ASR models trained with connectionist temporal classification (CTC) due to noisy hypotheses produced by a non-autoregressive, context-independent beam search. We present a finite-state transducer (FST) technique for rewriting wordpiece lattices generated by Transformer-based CTC models. Our algorithm performs grapheme-to-phoneme (G2P) conversion directly from wordpieces into phonemes, avoiding explicit word representations and exploiting the richness of the CTC lattice. Our approach requires no retraining or modification of the ASR model. We achieved up to a 15.2% relative reduction in sentence error rate (SER) on a test set with contextually relevant entities.
Abstract:Automatic speech recognition (ASR) systems can suffer from poor recall for various reasons, such as noisy audio, lack of sufficient training data, etc. Previous work has shown that recall can be improved by retrieving rewrite candidates from a large database of likely, contextually-relevant alternatives to the hypothesis text using nearest-neighbors search over embeddings of the ASR hypothesis text to correct and candidate corrections. However, ASR-hypothesis-based retrieval can yield poor precision if the textual hypotheses are too phonetically dissimilar to the transcript truth. In this paper, we eliminate the hypothesis-audio mismatch problem by querying the correction database directly using embeddings derived from the utterance audio; the embeddings of the utterance audio and candidate corrections are produced by multimodal speech-text embedding networks trained to place the embedding of the audio of an utterance and the embedding of its corresponding textual transcript close together. After locating an appropriate correction candidate using nearest-neighbor search, we score the candidate with its speech-text embedding distance before adding the candidate to the original n-best list. We show a relative word error rate (WER) reduction of 6% on utterances whose transcripts appear in the candidate set, without increasing WER on general utterances.