Abstract:Computational optical imaging (COI) systems have enabled the acquisition of high-dimensional signals through optical coding elements (OCEs). OCEs encode the high-dimensional signal in one or more snapshots, which are subsequently decoded using computational algorithms. Currently, COI systems are optimized through an end-to-end (E2E) approach, where the OCEs are modeled as a layer of a neural network and the remaining layers perform a specific imaging task. However, the performance of COI systems optimized through E2E is limited by the physical constraints imposed by these systems. This paper proposes a knowledge distillation (KD) framework for the design of highly physically constrained COI systems. This approach employs the KD methodology, which consists of a teacher-student relationship, where a high-performance, unconstrained COI system (the teacher), guides the optimization of a physically constrained system (the student) characterized by a limited number of snapshots. We validate the proposed approach, using a binary coded apertures single pixel camera for monochromatic and multispectral image reconstruction. Simulation results demonstrate the superiority of the KD scheme over traditional E2E optimization for the designing of highly physically constrained COI systems.
Abstract:Seismic data interpolation plays a crucial role in subsurface imaging, enabling accurate analysis and interpretation throughout the seismic processing workflow. Despite the widespread exploration of deep supervised learning methods for seismic data reconstruction, several challenges still remain open. Particularly, the requirement of extensive training data and poor domain generalization due to the seismic survey's variability poses significant issues. To overcome these limitations, this paper introduces a deep-learning-based seismic data reconstruction approach that leverages data redundancy. This method involves a two-stage training process. First, an adversarial generative network (GAN) is trained using synthetic seismic data, enabling the extraction and learning of their primary and local seismic characteristics. Second, a reconstruction network is trained with synthetic data generated by the GAN, which dynamically adjusts the noise and distortion level at each epoch to promote feature diversity. This approach enhances the generalization capabilities of the reconstruction network by allowing control over the generation of seismic patterns from the latent space of the GAN, thereby reducing the dependency on large seismic databases. Experimental results on field and synthetic seismic datasets both pre-stack and post-stack show that the proposed method outperforms the baseline supervised learning and unsupervised approaches such as deep seismic prior and internal learning, by up to 8 dB of PSNR.