Abstract:Implicit Neural Representations (INRs) and Neural Fields are a novel paradigm for signal representation, from images and audio to 3D scenes and videos. The fundamental idea is to represent a signal as a continuous and differentiable neural network. This idea offers unprecedented benefits such as continuous resolution and memory efficiency, enabling new compression techniques. However, representing data as neural networks poses new challenges. For instance, given a 2D image as a neural network, how can we further compress such a neural image?. In this work, we present a novel analysis on compressing neural fields, with the focus on images. We also introduce Adaptive Neural Images (ANI), an efficient neural representation that enables adaptation to different inference or transmission requirements. Our proposed method allows to reduce the bits-per-pixel (bpp) of the neural image by 4x, without losing sensitive details or harming fidelity. We achieve this thanks to our successful implementation of 4-bit neural representations. Our work offers a new framework for developing compressed neural fields.
Abstract:We propose a light-weight and highly efficient Joint Detection and Tracking pipeline for the task of Multi-Object Tracking using a fully-transformer architecture. It is a modified version of TransTrack, which overcomes the computational bottleneck associated with its design, and at the same time, achieves state-of-the-art MOTA score of 73.20%. The model design is driven by a transformer based backbone instead of CNN, which is highly scalable with the input resolution. We also propose a drop-in replacement for Feed Forward Network of transformer encoder layer, by using Butterfly Transform Operation to perform channel fusion and depth-wise convolution to learn spatial context within the feature maps, otherwise missing within the attention maps of the transformer. As a result of our modifications, we reduce the overall model size of TransTrack by 58.73% and the complexity by 78.72%. Therefore, we expect our design to provide novel perspectives for architecture optimization in future research related to multi-object tracking.