Abstract:Epilepsy is a common neurological disorder characterized by recurrent seizures accompanied by excessive synchronous brain activity. The process of structural and functional brain alterations leading to increased seizure susceptibility and eventually spontaneous seizures is called epileptogenesis (EPG) and can span months or even years. Detecting and monitoring the progression of EPG could allow for targeted early interventions that could slow down disease progression or even halt its development. Here, we propose an approach for staging EPG using deep neural networks and identify potential electroencephalography (EEG) biomarkers to distinguish different phases of EPG. Specifically, continuous intracranial EEG recordings were collected from a rodent model where epilepsy is induced by electrical perforant pathway stimulation (PPS). A deep neural network (DNN) is trained to distinguish EEG signals from before stimulation (baseline), shortly after the PPS and long after the PPS but before the first spontaneous seizure (FSS). Experimental results show that our proposed method can classify EEG signals from the three phases with an average area under the curve (AUC) of 0.93, 0.89, and 0.86. To the best of our knowledge, this represents the first successful attempt to stage EPG prior to the FSS using DNNs.
Abstract:Epilepsy is one of the most common neurological disorders, affecting about 1% of the population at all ages. Detecting the development of epilepsy, i.e., epileptogenesis (EPG), before any seizures occur could allow for early interventions and potentially more effective treatments. Here, we investigate if modern machine learning (ML) techniques can detect EPG from intra-cranial electroencephalography (EEG) recordings prior to the occurrence of any seizures. For this we use a rodent model of epilepsy where EPG is triggered by electrical stimulation of the brain. We propose a ML framework for EPG identification, which combines a deep convolutional neural network (CNN) with a prediction aggregation method to obtain the final classification decision. Specifically, the neural network is trained to distinguish five second segments of EEG recordings taken from either the pre-stimulation period or the post-stimulation period. Due to the gradual development of epilepsy, there is enormous overlap of the EEG patterns before and after the stimulation. Hence, a prediction aggregation process is introduced, which pools predictions over a longer period. By aggregating predictions over one hour, our approach achieves an area under the curve (AUC) of 0.99 on the EPG detection task. This demonstrates the feasibility of EPG prediction from EEG recordings.