Abstract:Machine learning models are prone to adversarial attacks, where inputs can be manipulated in order to cause misclassifications. While previous research has focused on techniques like Generative Adversarial Networks (GANs), there's limited exploration of GANs and Synthetic Minority Oversampling Technique (SMOTE) in text and image classification models to perform adversarial attacks. Our study addresses this gap by training various machine learning models and using GANs and SMOTE to generate additional data points aimed at attacking text classification models. Furthermore, we extend our investigation to face recognition models, training a Convolutional Neural Network(CNN) and subjecting it to adversarial attacks with fast gradient sign perturbations on key features identified by GradCAM, a technique used to highlight key image characteristics CNNs use in classification. Our experiments reveal a significant vulnerability in classification models. Specifically, we observe a 20 % decrease in accuracy for the top-performing text classification models post-attack, along with a 30 % decrease in facial recognition accuracy. This highlights the susceptibility of these models to manipulation of input data. Adversarial attacks not only compromise the security but also undermine the reliability of machine learning systems. By showcasing the impact of adversarial attacks on both text classification and face recognition models, our study underscores the urgent need for develop robust defenses against such vulnerabilities.
Abstract:High-throughput phenotyping refers to the non-destructive and efficient evaluation of plant phenotypes. In recent years, it has been coupled with machine learning in order to improve the process of phenotyping plants by increasing efficiency in handling large datasets and developing methods for the extraction of specific traits. Previous studies have developed methods to advance these challenges through the application of deep neural networks in tandem with automated cameras; however, the datasets being studied often excluded physical labels. In this study, we used a dataset provided by Oak Ridge National Laboratory with 1,672 images of Populus Trichocarpa with white labels displaying treatment (control or drought), block, row, position, and genotype. Optical character recognition (OCR) was used to read these labels on the plants, image segmentation techniques in conjunction with machine learning algorithms were used for morphological classifications, machine learning models were used to predict treatment based on those classifications, and analyzed encoded EXIF tags were used for the purpose of finding leaf size and correlations between phenotypes. We found that our OCR model had an accuracy of 94.31% for non-null text extractions, allowing for the information to be accurately placed in a spreadsheet. Our classification models identified leaf shape, color, and level of brown splotches with an average accuracy of 62.82%, and plant treatment with an accuracy of 60.08%. Finally, we identified a few crucial pieces of information absent from the EXIF tags that prevented the assessment of the leaf size. There was also missing information that prevented the assessment of correlations between phenotypes and conditions. However, future studies could improve upon this to allow for the assessment of these features.