Abstract:In diffusion-based algorithms for adaptive distributed estimation, each node of an adaptive network estimates a target parameter vector by creating an intermediate estimate and then combining the intermediate estimates available within its closed neighborhood. We analyze the performance of a reduced-communication diffusion least mean-square (RC-DLMS) algorithm, which allows each node to receive the intermediate estimates of only a subset of its neighbors at each iteration. This algorithm eases the usage of network communication resources and delivers a trade-off between estimation performance and communication cost. We show analytically that the RC-DLMS algorithm is stable and convergent in both mean and mean-square senses. We also calculate its theoretical steady-state mean-square deviation. Simulation results demonstrate a good match between theory and experiment.
Abstract:We develop a recursive total least-squares (RTLS) algorithm for errors-in-variables system identification utilizing the inverse power method and the dichotomous coordinate-descent (DCD) iterations. The proposed algorithm, called DCD-RTLS, outperforms the previously-proposed RTLS algorithms, which are based on the line-search method, with reduced computational complexity. We perform a comprehensive analysis of the DCD-RTLS algorithm and show that it is asymptotically unbiased as well as being stable in the mean. We also find a lower bound for the forgetting factor that ensures mean-square stability of the algorithm and calculate the theoretical steady-state mean-square deviation (MSD). We verify the effectiveness of the proposed algorithm and the accuracy of the predicted steady-state MSD via simulations.