Abstract:Active learning aims to reduce annotation cost by predicting which samples are useful for a human teacher to label. However it has become clear there is no best active learning algorithm. Inspired by various philosophies about what constitutes a good criteria, different algorithms perform well on different datasets. This has motivated research into ensembles of active learners that learn what constitutes a good criteria in a given scenario, typically via multi-armed bandit algorithms. Though algorithm ensembles can lead to better results, they overlook the fact that not only does algorithm efficacy vary across datasets, but also during a single active learning session. That is, the best criteria is non-stationary. This breaks existing algorithms' guarantees and hampers their performance in practice. In this paper, we propose dynamic ensemble active learning as a more general and promising research direction. We develop a dynamic ensemble active learner based on a non-stationary multi-armed bandit with expert advice algorithm. Our dynamic ensemble selects the right criteria at each step of active learning. It has theoretical guarantees, and shows encouraging results on $13$ popular datasets.
Abstract:Active learning (AL) aims to enable training high performance classifiers with low annotation cost by predicting which subset of unlabelled instances would be most beneficial to label. The importance of AL has motivated extensive research, proposing a wide variety of manually designed AL algorithms with diverse theoretical and intuitive motivations. In contrast to this body of research, we propose to treat active learning algorithm design as a meta-learning problem and learn the best criterion from data. We model an active learning algorithm as a deep neural network that inputs the base learner state and the unlabelled point set and predicts the best point to annotate next. Training this active query policy network with reinforcement learning, produces the best non-myopic policy for a given dataset. The key challenge in achieving a general solution to AL then becomes that of learner generalisation, particularly across heterogeneous datasets. We propose a multi-task dataset-embedding approach that allows dataset-agnostic active learners to be trained. Our evaluation shows that AL algorithms trained in this way can directly generalise across diverse problems.