Abstract:Graph neural networks (GNNs) are widely applied in graph data modeling. However, existing GNNs are often trained in a task-driven manner that fails to fully capture the intrinsic nature of the graph structure, resulting in sub-optimal node and graph representations. To address this limitation, we propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of GNNs, which is inspired by prompt mechanisms in natural language processing. GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks, producing higher-quality node and graph representations. In extensive experiments on eleven real-world datasets, after being trained by GPL, GNNs significantly outperform their original performance on node classification, graph classification, and edge prediction tasks (up to 10.28%, 16.5%, and 24.15%, respectively). By allowing GNNs to capture the inherent structural prompts of graphs in GPL, they can alleviate the issue of over-smooth and achieve new state-of-the-art performances, which introduces a novel and effective direction for GNN research with potential applications in various domains.
Abstract:Despite the Graph Neural Networks' (GNNs) proficiency in analyzing graph data, achieving high-accuracy and interpretable predictions remains challenging. Existing GNN interpreters typically provide post-hoc explanations disjointed from GNNs' predictions, resulting in misrepresentations. Self-explainable GNNs offer built-in explanations during the training process. However, they cannot exploit the explanatory outcomes to augment prediction performance, and they fail to provide high-quality explanations of node features and require additional processes to generate explainable subgraphs, which is costly. To address the aforementioned limitations, we propose a self-explained and self-supervised graph neural network (SES) to bridge the gap between explainability and prediction. SES comprises two processes: explainable training and enhanced predictive learning. During explainable training, SES employs a global mask generator co-trained with a graph encoder and directly produces crucial structure and feature masks, reducing time consumption and providing node feature and subgraph explanations. In the enhanced predictive learning phase, mask-based positive-negative pairs are constructed utilizing the explanations to compute a triplet loss and enhance the node representations by contrastive learning.