Abstract:Explanations are central to everyday life, and are a topic of growing interest in the AI community. To investigate the process of providing natural language explanations, we leverage the dynamics of the /r/ChangeMyView subreddit to build a dataset with 36K naturally occurring explanations of why an argument is persuasive. We propose a novel word-level prediction task to investigate how explanations selectively reuse, or echo, information from what is being explained (henceforth, explanandum). We develop features to capture the properties of a word in the explanandum, and show that our proposed features not only have relatively strong predictive power on the echoing of a word in an explanation, but also enhance neural methods of generating explanations. In particular, while the non-contextual properties of a word itself are more valuable for stopwords, the interaction between the constituent parts of an explanandum is crucial in predicting the echoing of content words. We also find intriguing patterns of a word being echoed. For example, although nouns are generally less likely to be echoed, subjects and objects can, depending on their source, be more likely to be echoed in the explanations.
Abstract:Moderators of online communities often employ comment deletion as a tool. We ask here whether, beyond the positive effects of shielding a community from undesirable content, does comment removal actually cause the behavior of the comment's author to improve? We examine this question in a particularly well-moderated community, the ChangeMyView subreddit. The standard analytic approach of interrupted time-series analysis unfortunately cannot answer this question of causality because it fails to distinguish the effect of having made a non-compliant comment from the effect of being subjected to moderator removal of that comment. We therefore leverage a "delayed feedback" approach based on the observation that some users may remain active between the time when they posted the non-compliant comment and the time when that comment is deleted. Applying this approach to such users, we reveal the causal role of comment deletion in reducing immediate noncompliance rates, although we do not find evidence of it having a causal role in inducing other behavior improvements. Our work thus empirically demonstrates both the promise and some potential limits of content removal as a positive moderation strategy, and points to future directions for identifying causal effects from observational data.