Abstract:Topic models are statistical tools that allow their users to gain qualitative and quantitative insights into the contents of textual corpora without the need for close reading. They can be applied in a wide range of settings from discourse analysis, through pretraining data curation, to text filtering. Topic models are typically parameter-rich, complex models, and interpreting these parameters can be challenging for their users. It is typical practice for users to interpret topics based on the top 10 highest ranking terms on a given topic. This list-of-words approach, however, gives users a limited and biased picture of the content of topics. Thoughtful user interface design and visualizations can help users gain a more complete and accurate understanding of topic models' output. While some visualization utilities do exist for topic models, these are typically limited to a certain type of topic model. We introduce topicwizard, a framework for model-agnostic topic model interpretation, that provides intuitive and interactive tools that help users examine the complex semantic relations between documents, words and topics learned by topic models.
Abstract:The evaluation of English text embeddings has transitioned from evaluating a handful of datasets to broad coverage across many tasks through benchmarks such as MTEB. However, this is not the case for multilingual text embeddings due to a lack of available benchmarks. To address this problem, we introduce the Scandinavian Embedding Benchmark (SEB). SEB is a comprehensive framework that enables text embedding evaluation for Scandinavian languages across 24 tasks, 10 subtasks, and 4 task categories. Building on SEB, we evaluate more than 26 models, uncovering significant performance disparities between public and commercial solutions not previously captured by MTEB. We open-source SEB and integrate it with MTEB, thus bridging the text embedding evaluation gap for Scandinavian languages.