Abstract:Frequency modulated continuous wave (FMCW) millimeter-wave (mmWave) radars play a critical role in many of the advanced driver assistance systems (ADAS) featured on today's vehicles. While previous works have demonstrated (only) successful false-positive spoofing attacks against these sensors, all but one assumed that an attacker had the runtime knowledge of the victim radar's configuration. In this work, we introduce MadRadar, a general black-box radar attack framework for automotive mmWave FMCW radars capable of estimating the victim radar's configuration in real-time, and then executing an attack based on the estimates. We evaluate the impact of such attacks maliciously manipulating a victim radar's point cloud, and show the novel ability to effectively `add' (i.e., false positive attacks), `remove' (i.e., false negative attacks), or `move' (i.e., translation attacks) object detections from a victim vehicle's scene. Finally, we experimentally demonstrate the feasibility of our attacks on real-world case studies performed using a real-time physical prototype on a software-defined radio platform.
Abstract:Leading autonomous vehicle (AV) platforms and testing infrastructures are, unfortunately, proprietary and closed-source. Thus, it is difficult to evaluate how well safety-critical AVs perform and how safe they truly are. Similarly, few platforms exist for much-needed multi-agent analysis. To provide a starting point for analysis of sensor fusion and collaborative & distributed sensing, we design an accessible, modular sensing platform with AVstack. We build collaborative and distributed camera-radar fusion algorithms and demonstrate an evaluation ecosystem of AV datasets, physics-based simulators, and hardware in the physical world. This three-part ecosystem enables testing next-generation configurations that are prohibitively challenging in existing development platforms.