Abstract:Emerging mobile virtual reality (VR) systems will require to continuously perform complex computer vision tasks on ultra-high-resolution video frames through the execution of deep neural networks (DNNs)-based algorithms. Since state-of-the-art DNNs require computational power that is excessive for mobile devices, techniques based on wireless edge computing (WEC) have been recently proposed. However, existing WEC methods require the transmission and processing of a high amount of video data which may ultimately saturate the wireless link. In this paper, we propose a novel Sensing-Assisted Wireless Edge Computing (SAWEC) paradigm to address this issue. SAWEC leverages knowledge about the physical environment to reduce the end-to-end latency and overall computational burden by transmitting to the edge server only the relevant data for the delivery of the service. Our intuition is that the transmission of the portion of the video frames where there are no changes with respect to previous frames can be avoided. Specifically, we leverage wireless sensing techniques to estimate the location of objects in the environment and obtain insights about the environment dynamics. Hence, only the part of the frames where any environmental change is detected is transmitted and processed. We evaluated SAWEC by using a 10K 360$^{\circ}$ camera with a Wi-Fi 6 sensing system operating at 160 MHz and performing localization and tracking. We perform experiments in an anechoic chamber and a hall room with two human subjects in six different setups. Experimental results show that SAWEC reduces the channel occupation, and end-to-end latency by 93.81%, and 96.19% respectively while improving the instance segmentation performance by 46.98% with respect to state-of-the-art WEC approaches. For reproducibility purposes, we pledge to share our whole dataset and code repository.
Abstract:Recently, researchers have shown that the beamforming feedback angles (BFAs) used for Wi-Fi multiple-input multiple-output (MIMO) operations can be effectively leveraged as a proxy of the channel frequency response (CFR) for different purposes. Examples are passive human activity recognition and device fingerprinting. However, even though the BFAs report frames are sent in clear text, there is not yet a unified open-source tool to extract and decode the BFAs from the frames. To fill this gap, we developed Wi-BFI, the first tool that allows retrieving Wi-Fi BFAs and reconstructing the beamforming feedback information (BFI) - a compressed representation of the CFR - from the BFAs frames captured over the air. The tool supports BFAs extraction within both IEEE 802.11ac and 802.11ax networks operating on radio channels with 160/80/40/20 MHz bandwidth. Both multi-user and single-user MIMO feedback can be decoded through Wi-BFI. The tool supports real-time and offline extraction and storage of BFAs and BFI. The real-time mode also includes a visual representation of the channel state that continuously updates based on the collected data. Wi-BFI code is open source and the tool is also available as a pip package.
Abstract:In this paper, we propose BeamSense, a completely novel approach to implement standard-compliant Wi-Fi sensing applications. Wi-Fi sensing enables game-changing applications in remote healthcare, home entertainment, and home surveillance, among others. However, existing work leverages the manual extraction of channel state information (CSI) from Wi-Fi chips to classify activities, which is not supported by the Wi-Fi standard and hence requires the usage of specialized equipment. On the contrary, BeamSense leverages the standard-compliant beamforming feedback information (BFI) to characterize the propagation environment. Conversely from CSI, the BFI (i) can be easily recorded without any firmware modification, and (ii) captures the multiple channels between the access point and the stations, thus providing much better sensitivity. BeamSense includes a novel cross-domain few-shot learning (FSL) algorithm to handle unseen environments and subjects with few additional data points. We evaluate BeamSense through an extensive data collection campaign with three subjects performing twenty different activities in three different environments. We show that our BFI-based approach achieves about 10% more accuracy when compared to CSI-based prior work, while our FSL strategy improves accuracy by up to 30% and 80% when compared with state-of-the-art cross-domain algorithms.