Abstract:Digital twin (DT) technologies have emerged as a solution for real-time data-driven modeling of cyber physical systems (CPS) using the vast amount of data available by Internet of Things (IoT) networks. In this position paper, we elucidate unique characteristics and capabilities of a DT framework that enables realization of such promises as online learning of a physical environment, real-time monitoring of assets, Monte Carlo heuristic search for predictive prevention, on-policy, and off-policy reinforcement learning in real-time. We establish a conceptual layered architecture for a DT framework with decentralized implementation on cloud computing and enabled by artificial intelligence (AI) services for modeling, event detection, and decision-making processes. The DT framework separates the control functions, deployed as a system of logically centralized process, from the physical devices under control, much like software-defined networking (SDN) in fifth generation (5G) wireless networks. We discuss the moment of the DT framework in facilitating implementation of network-based control processes and its implications for critical infrastructure. To clarify the significance of DT in lowering the risk of development and deployment of innovative technologies on existing system, we discuss the application of implementing zero trust architecture (ZTA) as a necessary security framework in future data-driven communication networks.
Abstract:Dynamic resource allocation plays a critical role in the next generation of intelligent wireless communication systems. Machine learning has been leveraged as a powerful tool to make strides in this domain. In most cases, the progress has been limited to simulations due to the challenging nature of hardware deployment of these solutions. In this paper, for the first time, we design and deploy deep reinforcement learning (DRL)-based power control agents on the GPU embedded software defined radios (SDRs). To this end, we propose an end-to-end framework (MR-iNet Gym) where the simulation suite and the embedded SDR development work cohesively to overcome real-world implementation hurdles. To prove feasibility, we consider the problem of distributed power control for code-division multiple access (DS-CDMA)-based LPI/D transceivers. We first build a DS-CDMA ns3 module that interacts with the OpenAI Gym environment. Next, we train the power control DRL agents in this ns3-gym simulation environment in a scenario that replicates our hardware testbed. Next, for edge (embedded on-device) deployment, the trained models are optimized for real-time operation without loss of performance. Hardware-based evaluation verifies the efficiency of DRL agents over traditional distributed constrained power control (DCPC) algorithm. More significantly, as the primary goal, this is the first work that has established the feasibility of deploying DRL to provide optimized distributed resource allocation for next-generation of GPU-embedded radios.
Abstract:In this position paper, we discuss the critical need for integrating zero trust (ZT) principles into next-generation communication networks (5G/6G) for both tactical and commercial applications. We highlight the challenges and introduce the concept of an intelligent zero trust architecture (i-ZTA) as a security framework in 5G/6G networks with untrusted components. While network virtualization, software-defined networking (SDN), and service-based architectures (SBA) are key enablers of 5G networks, operating in an untrusted environment has also become a key feature of the networks. Further, seamless connectivity to a high volume of devices in multi-radio access technology (RAT) has broadened the attack surface on information infrastructure. Network assurance in a dynamic untrusted environment calls for revolutionary architectures beyond existing static security frameworks. This paper presents the architectural design of an i-ZTA upon which modern artificial intelligence (AI) algorithms can be developed to provide information security in untrusted networks. We introduce key ZT principles as real-time Monitoring of the security state of network assets, Evaluating the risk of individual access requests, and Deciding on access authorization using a dynamic trust algorithm, called MED components. The envisioned architecture adopts an SBA-based design, similar to the 3GPP specification of 5G networks, by leveraging the open radio access network (O-RAN) architecture with appropriate real-time engines and network interfaces for collecting necessary machine learning data. The i-ZTA is also expected to exploit the multi-access edge computing (MEC) technology of 5G as a key enabler of intelligent MED components for resource-constraint devices.