Kitware, Inc
Abstract:In this paper, we present the Multi-view Extended Videos with Identities (MEVID) dataset for large-scale, video person re-identification (ReID) in the wild. To our knowledge, MEVID represents the most-varied video person ReID dataset, spanning an extensive indoor and outdoor environment across nine unique dates in a 73-day window, various camera viewpoints, and entity clothing changes. Specifically, we label the identities of 158 unique people wearing 598 outfits taken from 8, 092 tracklets, average length of about 590 frames, seen in 33 camera views from the very large-scale MEVA person activities dataset. While other datasets have more unique identities, MEVID emphasizes a richer set of information about each individual, such as: 4 outfits/identity vs. 2 outfits/identity in CCVID, 33 viewpoints across 17 locations vs. 6 in 5 simulated locations for MTA, and 10 million frames vs. 3 million for LS-VID. Being based on the MEVA video dataset, we also inherit data that is intentionally demographically balanced to the continental United States. To accelerate the annotation process, we developed a semi-automatic annotation framework and GUI that combines state-of-the-art real-time models for object detection, pose estimation, person ReID, and multi-object tracking. We evaluate several state-of-the-art methods on MEVID challenge problems and comprehensively quantify their robustness in terms of changes of outfit, scale, and background location. Our quantitative analysis on the realistic, unique aspects of MEVID shows that there are significant remaining challenges in video person ReID and indicates important directions for future research.
Abstract:We present the Multiview Extended Video with Activities (MEVA) dataset, a new and very-large-scale dataset for human activity recognition. Existing security datasets either focus on activity counts by aggregating public video disseminated due to its content, which typically excludes same-scene background video, or they achieve persistence by observing public areas and thus cannot control for activity content. Our dataset is over 9300 hours of untrimmed, continuous video, scripted to include diverse, simultaneous activities, along with spontaneous background activity. We have annotated 144 hours for 37 activity types, marking bounding boxes of actors and props. Our collection observed approximately 100 actors performing scripted scenarios and spontaneous background activity over a three-week period at an access-controlled venue, collecting in multiple modalities with overlapping and non-overlapping indoor and outdoor viewpoints. The resulting data includes video from 38 RGB and thermal IR cameras, 42 hours of UAV footage, as well as GPS locations for the actors. 122 hours of annotation are sequestered in support of the NIST Activity in Extended Video (ActEV) challenge; the other 22 hours of annotation and the corresponding video are available on our website, along with an additional 306 hours of ground camera data, 4.6 hours of UAV data, and 9.6 hours of GPS logs. Additional derived data includes camera models geo-registering the outdoor cameras and a dense 3D point cloud model of the outdoor scene. The data was collected with IRB oversight and approval and released under a CC-BY-4.0 license.