Abstract:Optical coherence tomography angiography (OCTA) is a non-invasive imaging technique widely used to study vascular structures and micro-circulation dynamics in the retina and choroid. OCTA has been widely used in clinics for diagnosing ocular disease and monitoring its progression, because OCTA is safer and faster than dye-based angiography while retaining the ability to characterize micro-scale structures. However, OCTA data contains many inherent noises from the devices and acquisition protocols and suffers from various types of artifacts, which impairs diagnostic accuracy and repeatability. Deep learning (DL) based imaging analysis models are able to automatically detect and remove artifacts and noises, and enhance the quality of image data. It is also a powerful tool for segmentation and identification of normal and pathological structures in the images. Thus, the value of OCTA imaging can be significantly enhanced by the DL-based approaches for interpreting and performing measurements and predictions on the OCTA data. In this study, we reviewed literature on the DL models for OCTA images in the latest five years. In particular, we focused on discussing the current problems in the OCTA data and the corresponding design principles of the DL models. We also reviewed the state-of-art DL models for 3D volumetric reconstruction of the vascular networks and pathological structures such as the edema and distorted optic disc. In addition, the publicly available dataset of OCTA images are summarized at the end of this review. Overall, this review can provide valuable insights for engineers to develop novel DL models by utilizing the characteristics of OCTA signals and images. The pros and cons of each DL methods and their applications discussed in this review can be helpful to assist technicians and clinicians to use proper DL models for fundamental research and disease screening.
Abstract:Recent studies have highlighted the limitations of large language models in mathematical reasoning, particularly their inability to capture the underlying logic. Inspired by meta-learning, we propose that models should acquire not only task-specific knowledge but also transferable problem-solving skills. We introduce MetaRuleGPT, a novel Transformer-based architecture that performs precise numerical calculations and complex logical operations by learning and combining different rules. In contrast with traditional training sets, which are heavily composed of massive raw instance data, MetaRuleGPT is pre-trained on much less abstract datasets containing basic, compound, and iterative rules for mathematical reasoning. Extensive experimental results demonstrate MetaRuleGPT can mimic human's rule-following capabilities, break down complexity, and iteratively derive accurate results for complex mathematical problems. These findings prove the potential of rule learning to enhance the numerical reasoning abilities of language models.