Abstract:Interdicting a criminal with limited police resources is a challenging task as the criminal changes location over time. The size of the large transportation network further adds to the difficulty of this scenario. To tackle this issue, we consider the concept of a layered graph. At each time stamp, we create a copy of the entire transportation network to track the possible movements of both players, the attacker and the defenders. We consider a Stackelberg game in a dynamic crime scenario where the attacker changes location over time while the defenders attempt to interdict the attacker on his escape route. Given a set of defender strategies, the optimal attacker strategy is determined by applying Dijkstra's algorithm on the layered networks. Here, the attacker aims to minimize while the defenders aim to maximize the probability of interdiction. We develop an approximation algorithm on the layered networks to find near-optimal strategy for defenders. The efficacy of the developed approach is compared with the adopted MILP approach. We compare the results in terms of computational time and solution quality. The quality of the results demonstrates the need for the developed approach, as it effectively solves the complex problem within a short amount of time.
Abstract:An online decision-making problem is a learning problem in which a player repeatedly makes decisions in order to minimize the long-term loss. These problems that emerge in applications often have nonlinear combinatorial objective functions, and developing algorithms for such problems has attracted considerable attention. An existing general framework for dealing with such objective functions is the online submodular minimization. However, practical problems are often out of the scope of this framework, since the domain of a submodular function is limited to a subset of the unit hypercube. To manage this limitation of the existing framework, we in this paper introduce the online $\mathrm{L}^{\natural}$-convex minimization, where an $\mathrm{L}^{\natural}$-convex function generalizes a submodular function so that the domain is a subset of the integer lattice. We propose computationally efficient algorithms for the online $\mathrm{L}^{\natural}$-convex function minimization in two major settings: the full information and the bandit settings. We analyze the regrets of these algorithms and show in particular that our algorithm for the full information setting obtains a tight regret bound up to a constant factor. We also demonstrate several motivating examples that illustrate the usefulness of the online $\mathrm{L}^{\natural}$-convex minimization.