Abstract:Nowadays, many Natural Language Processing (NLP) tasks see the demand for incorporating knowledge external to the local information to further improve the performance. However, there is little related work on Named Entity Recognition (NER), which is one of the foundations of NLP. Specifically, no studies were conducted on the query generation and re-ranking for retrieving the related information for the purpose of improving NER. This work demonstrates the effectiveness of a DNN-based query generation method and a mention-aware re-ranking architecture based on BERTScore particularly for NER. In the end, a state-of-the-art performance of 61.56 micro-f1 score on WNUT17 dataset is achieved.
Abstract:We present ASDiv (Academia Sinica Diverse MWP Dataset), a diverse (in terms of both language patterns and problem types) English math word problem (MWP) corpus for evaluating the capability of various MWP solvers. Existing MWP corpora for studying AI progress remain limited either in language usage patterns or in problem types. We thus present a new English MWP corpus with 2,305 MWPs that cover more text patterns and most problem types taught in elementary school. Each MWP is annotated with its problem type and grade level (for indicating the level of difficulty). Furthermore, we propose a metric to measure the lexicon usage diversity of a given MWP corpus, and demonstrate that ASDiv is more diverse than existing corpora. Experiments show that our proposed corpus reflects the true capability of MWP solvers more faithfully.
Abstract:We present a novel approach to answer the Chinese elementary school Social Study Multiple Choice questions. Although BERT has demonstrated excellent performance on Reading Comprehension tasks, it is found not good at handling some specific types of questions, such as Negation, All-of-the-above, and None-of-the-above. We thus propose a novel framework to cascade BERT with a Pre-Processor and an Answer-Selector modules to tackle the above challenges. Experimental results show the proposed approach effectively improves the performance of BERT, and thus demonstrate the feasibility of supplementing BERT with additional modules.
Abstract:With the recent advancements in deep learning, neural solvers have gained promising results in solving math word problems. However, these SOTA solvers only generate binary expression trees that contain basic arithmetic operators and do not explicitly use the math formulas. As a result, the expression trees they produce are lengthy and uninterpretable because they need to use multiple operators and constants to represent one single formula. In this paper, we propose sequence-to-general tree (S2G) that learns to generate interpretable and executable operation trees where the nodes can be formulas with an arbitrary number of arguments. With nodes now allowed to be formulas, S2G can learn to incorporate mathematical domain knowledge into problem-solving, making the results more interpretable. Experiments show that S2G can achieve a better performance against strong baselines on problems that require domain knowledge.
Abstract:We introduce MeSys, a meaning-based approach, for solving English math word problems (MWPs) via understanding and reasoning in this paper. It first analyzes the text, transforms both body and question parts into their corresponding logic forms, and then performs inference on them. The associated context of each quantity is represented with proposed role-tags (e.g., nsubj, verb, etc.), which provides the flexibility for annotating an extracted math quantity with its associated context information (i.e., the physical meaning of this quantity). Statistical models are proposed to select the operator and operands. A noisy dataset is designed to assess if a solver solves MWPs mainly via understanding or mechanical pattern matching. Experimental results show that our approach outperforms existing systems on both benchmark datasets and the noisy dataset, which demonstrates that the proposed approach understands the meaning of each quantity in the text more.