Abstract:In this paper, we study the problem of generating structured objects that conform to a complex schema, with intricate dependencies between the different components (facets) of the object. The facets of the object (attributes, fields, columns, properties) can be a mix of short, structured, type-constrained facts, or long natural-language descriptions. The object has to be self-consistent between the different facets in the redundant information it carries (relative consistency), while being grounded with respect to world knowledge (absolute consistency). We frame the problem as a Language Modeling problem (Structured Object Language Modeling) and train an LLM to perform the task natively, without requiring instructions or prompt-engineering. We propose a self-supervised denoising method to train the model from an existing dataset of such objects. The input query can be the existing object itself, in which case the model acts as a regenerator, completing, correcting, normalizing the input, or any unstructured blurb to be structured. We show that the self-supervised denoising training provides a strong baseline, and that additional supervised fine-tuning with small amount of human demonstrations leads to further improvement. Experimental results show that the proposed method matches or outperforms prompt-engineered general-purpose state-of-the-art LLMs (Claude 3, Mixtral-8x7B), while being order-of-magnitude more cost-efficient.
Abstract:Large Language Models (LLMs) have facilitated structured data generation, with applications in domains like tabular data, document databases, product catalogs, etc. However, concerns persist about generation veracity due to incorrect references or hallucinations, necessitating the incorporation of some form of model confidence for mitigation. Existing confidence estimation methods on LLM generations primarily focus on the confidence at the individual token level or the entire output sequence level, limiting their applicability to structured data generation, which consists of an intricate mix of both independent and correlated entries at the sub-structure level. In this paper, we first investigate confidence estimation methods for generated sub-structure-level data. We introduce the concept of Confidence Network that applies on the hidden state of the LLM transformer, as a more targeted estimate than the traditional token conditional probability. We further propose Confidence-Aware sub-structure Beam Search (CABS), a novel decoding method operating at the sub-structure level in structured data generation. CABS enhances the faithfulness of structured data generation by considering confidence scores from the Confidence Network for each sub-structure-level data and iteratively refining the prompts. Results show that CABS outperforms traditional token-level beam search for structured data generation by 16.7% Recall at 90% precision averagely on the problem of product attribute generation.