Abstract:In this work, we review research studies that combine Reinforcement Learning (RL) and Large Language Models (LLMs), two areas that owe their momentum to the development of deep neural networks. We propose a novel taxonomy of three main classes based on the way that the two model types interact with each other. The first class, RL4LLM, includes studies where RL is leveraged to improve the performance of LLMs on tasks related to Natural Language Processing. L4LLM is divided into two sub-categories depending on whether RL is used to directly fine-tune an existing LLM or to improve the prompt of the LLM. In the second class, LLM4RL, an LLM assists the training of an RL model that performs a task that is not inherently related to natural language. We further break down LLM4RL based on the component of the RL training framework that the LLM assists or replaces, namely reward shaping, goal generation, and policy function. Finally, in the third class, RL+LLM, an LLM and an RL agent are embedded in a common planning framework without either of them contributing to training or fine-tuning of the other. We further branch this class to distinguish between studies with and without natural language feedback. We use this taxonomy to explore the motivations behind the synergy of LLMs and RL and explain the reasons for its success, while pinpointing potential shortcomings and areas where further research is needed, as well as alternative methodologies that serve the same goal.
Abstract:One of the most crucial tasks in seismic reflection imaging is to identify the salt bodies with high precision. Traditionally, this is accomplished by visually picking the salt/sediment boundaries, which requires a great amount of manual work and may introduce systematic bias. With recent progress of deep learning algorithm and growing computational power, a great deal of efforts have been made to replace human effort with machine power in salt body interpretation. Currently, the method of Convolutional neural networks (CNN) is revolutionizing the computer vision field and has been a hot topic in the image analysis. In this paper, the benefits of CNN-based classification are demonstrated by using a state-of-art network structure U-Net, along with the residual learning framework ResNet, to delineate salt body with high precision. Network adjustments, including the Exponential Linear Units (ELU) activation function, the Lov\'{a}sz-Softmax loss function, and stratified $K$-fold cross-validation, have been deployed to further improve the prediction accuracy. The preliminary result using SEG Advanced Modeling (SEAM) data shows good agreement between the predicted salt body and manually interpreted salt body, especially in areas with weak reflections. This indicates the great potential of applying CNN for salt-related interpretations.