Abstract:We can learn (more) about the state a quantum system is in through measurements. We look at how to describe the uncertainty about a quantum system's state conditional on executing such measurements. We show that by exploiting the interplay between desirability, coherence and indifference, a general rule for conditioning can be derived. We then apply this rule to conditioning on measurement outcomes, and show how it generalises to conditioning on a set of measurement outcomes.
Abstract:We show how the AGM framework for belief change (expansion, revision, contraction) can be extended to deal with conditioning in the so-called Desirability-Indifference framework, based on abstract notions of accepting and rejecting options, as well as on abstract notions of events. This level of abstraction allows us to deal simultaneously with classical and quantum probability theory.