Abstract:The use of AI in public spaces continually raises concerns about privacy and the protection of sensitive data. An example is the deployment of detection and recognition methods on humans, where images are provided by surveillance cameras. This results in the acquisition of great amounts of sensitive data, since the capture and transmission of images taken by such cameras happens unaltered, for them to be received by a server on the network. However, many applications do not explicitly require the identity of a given person in a scene; An anonymized representation containing information of the person's position while preserving the context of them in the scene suffices. We show how using a customized loss function on region of interests (ROI) can achieve sufficient anonymization such that human faces become unrecognizable while persons are kept detectable, by training an end-to-end optimized autoencoder for learned image compression that utilizes the flexibility of the learned analysis and reconstruction transforms for the task of mutating parts of the compression result. This approach enables compression and anonymization in one step on the capture device, instead of transmitting sensitive, nonanonymized data over the network. Additionally, we evaluate how this anonymization impacts the average precision of pre-trained foundation models on detecting faces (MTCNN) and humans (YOLOv8) in comparison to non-ANN based methods, while considering compression rate and latency.
Abstract:Due to the declining birthrate and aging population, the shortage of labor in the construction industry has become a serious problem, and increasing attention has been paid to automation of construction equipment. We focus on the automatic operation of articulated six-wheel dump trucks at construction sites. For the automatic operation of the dump trucks, it is important to estimate the position and the articulated angle of the dump trucks with high accuracy. In this study, we propose a method for estimating the state of a dump truck by using four global navigation satellite systems (GNSSs) installed on an articulated dump truck and a graph optimization method that utilizes the redundancy of multiple GNSSs. By adding real-time kinematic (RTK)-GNSS constraints and geometric constraints between the four antennas, the proposed method can robustly estimate the position and articulation angle even in environments where GNSS satellites are partially blocked. As a result of evaluating the accuracy of the proposed method through field tests, it was confirmed that the articulated angle could be estimated with an accuracy of 0.1$^\circ$ in an open-sky environment and 0.7$^\circ$ in a mountainous area simulating an elevation angle of 45$^\circ$ where GNSS satellites are blocked.
Abstract:Currently, drone research and development has received significant attention worldwide. Particularly, delivery services employ drones as it is a viable method to improve delivery efficiency by using a several unmanned drones. Research has been conducted to realize complete automation of drone control for such services. However, regarding the takeoff and landing port of the drones, conventional methods have focused on the landing operation of a single drone, and the continuous landing of multiple drones has not been realized. To address this issue, we propose a completely novel port system, "EAGLES Port," that allows several drones to continuously land and takeoff in a short time. Experiments verified that the landing time efficiency of the proposed port is ideally 7.5 times higher than that of conventional vertical landing systems. Moreover, the system can tolerate 270 mm of horizontal positional error, +-30 deg of angular error in the drone's approach (+-40 deg with the proposed gate mechanism), and up to 1.9 m/s of drone's approach speed. This technology significantly contributes to the scalability of drone usage. Therefore, it is critical for the development of a future drone port for the landing of automated drone swarms.