Abstract:This paper presents an efficient method for updating particles in a particle filter (PF) to address the position estimation problem when dealing with sharp-peaked likelihood functions derived from multiple observations. Sharp-peaked likelihood functions commonly arise from millimeter-accurate distance observations of carrier phases in the global navigation satellite system (GNSS). However, when such likelihood functions are used for particle weight updates, the absence of particles within the peaks leads to all particle weights becoming zero. To overcome this problem, in this study, a straightforward and effective approach is introduced for updating particles when dealing with sharp-peaked likelihood functions obtained from multiple observations. The proposed method, termed as the multiple update PF, leverages prior knowledge regarding the spread of distribution for each likelihood function and conducts weight updates and resampling iteratively in the particle update process, prioritizing the likelihood function spreads. Experimental results demonstrate the efficacy of our proposed method, particularly when applied to position estimation utilizing GNSS pseudorange and carrier phase observations. The multiple update PF exhibits faster convergence with fewer particles when compared to the conventional PF. Moreover, vehicle position estimation experiments conducted in urban environments reveal that the proposed method outperforms conventional GNSS positioning techniques, yielding more accurate position estimates.
Abstract:This paper proposes a novel positioning technique suitable for use in mobile robots in urban environments in which large global navigation satellite system (GNSS) positioning errors occur because of multipath signals. During GNSS positioning, the GNSS satellites that are obstructed by buildings emit reflection and diffraction signals, which are called non-line-of-sight (NLOS) multipath signals. These multipath signals cause major positioning errors. The key concept considered in this paper is the estimation of a user's position using the likelihood of the position hypotheses computed from the GNSS pseudoranges, consisting only of LOS signals based on the analysis of the pseudorange residuals. To determine the NLOS GNSS signals from the pseudorange residuals at the user's position, it is necessary to accurately determine the position before the computation of the pseudorange residuals. This problem is solved using a particle filter. We propose a likelihood estimation method using the Mahalanobis distance between the hypotheses of the user's position computed from only the LOS pseudoranges and the particles. To confirm the effectiveness of the proposed technique, a positioning test was performed in a real-world urban environment. The results demonstrated that the proposed method is effective for accurately estimating the user's position in urban canyons.
Abstract:Small-sized unmanned aerial vehicles (UAVs) have been widely investigated for use in a variety of applications such as remote sensing and aerial surveying. Direct three-dimensional (3D) mapping using a small-sized UAV equipped with a laser scanner is required for numerous remote sensing applications. In direct 3D mapping, the precise information about the position and attitude of the UAV is necessary for constructing 3D maps. In this study, we propose a novel and robust technique for estimating the position and attitude of small-sized UAVs by employing multiple low-cost and light-weight global navigation satellite system (GNSS) antennas/receivers. Using the "redundancy" of multiple GNSS receivers, we enhance the performance of real-time kinematic (RTK)-GNSS by employing single-frequency GNSS receivers. This method consists of two approaches: hybrid GNSS fix solutions and consistency examination of the GNSS signal strength. The fix rate of RTK-GNSS using single-frequency GNSS receivers can be highly enhanced to combine multiple RTK-GNSS to fix solutions in the multiple antennas. In addition, positioning accuracy and fix rate can be further enhanced to detect multipath signals by using multiple GNSS antennas. In this study, we developed a prototype UAV that is equipped with six GNSS antennas/receivers. From the static test results, we conclude that the proposed technique can enhance the accuracy of the position and attitude estimation in multipath environments. From the flight test, the proposed system could generate a 3D map with an accuracy of 5 cm.
Abstract:A pose-graph-based optimization technique is widely used to estimate robot poses using various sensor measurements from devices such as laser scanners and cameras. The global navigation satellite system (GNSS) has recently been used to estimate the absolute 3D position of outdoor mobile robots. However, since the accuracy of GNSS single-point positioning is only a few meters, the GNSS is not used for the loop closure of a pose graph. The main purpose of this study is to generate a loop closure of a pose graph using a time-relative real-time kinematic GNSS (TR-RTK-GNSS) technique. The proposed TR-RTK-GNSS technique uses time-differential carrier phase positioning, which is based on carrier-phase-based differential GNSS with a single GNSS receiver. Unlike a conventional RTK-GNSS, we can directly compute the robot's relative position using only a stand-alone GNSS receiver. The initial pose graph is generated from the accumulated velocity computed from GNSS Doppler measurements. To reduce the accumulated error of velocity, we use the TR-RTK-GNSS technique for the loop closure in the graph-based optimization framework. The kinematic positioning tests were performed using an unmanned aerial vehicle to confirm the effectiveness of the proposed technique. From the tests, we can estimate the vehicle's trajectory with approximately 3 cm accuracy using only a stand-alone GNSS receiver.
Abstract:Due to the declining birthrate and aging population, the shortage of labor in the construction industry has become a serious problem, and increasing attention has been paid to automation of construction equipment. We focus on the automatic operation of articulated six-wheel dump trucks at construction sites. For the automatic operation of the dump trucks, it is important to estimate the position and the articulated angle of the dump trucks with high accuracy. In this study, we propose a method for estimating the state of a dump truck by using four global navigation satellite systems (GNSSs) installed on an articulated dump truck and a graph optimization method that utilizes the redundancy of multiple GNSSs. By adding real-time kinematic (RTK)-GNSS constraints and geometric constraints between the four antennas, the proposed method can robustly estimate the position and articulation angle even in environments where GNSS satellites are partially blocked. As a result of evaluating the accuracy of the proposed method through field tests, it was confirmed that the articulated angle could be estimated with an accuracy of 0.1$^\circ$ in an open-sky environment and 0.7$^\circ$ in a mountainous area simulating an elevation angle of 45$^\circ$ where GNSS satellites are blocked.
Abstract:This paper proposes a highly accurate trajectory estimation method for outdoor mobile robots using global navigation satellite system (GNSS) time differences of carrier phase (TDCP) measurements. By using GNSS TDCP, the relative 3D position can be estimated with millimeter precision. However, when a phenomenon called cycle slip occurs, wherein the carrier phase measurement jumps and becomes discontinuous, it is impossible to accurately estimate the relative position using TDCP. Although previous studies have eliminated the effect of cycle slip using a robust optimization technique, it was difficult to completely eliminate the effect of outliers. In this paper, we propose a method to detect GNSS carrier phase cycle slip, estimate the amount of cycle slip, and modify the observed TDCP to calculate the relative position using the factor graph optimization framework. The estimated relative position acts as a loop closure in graph optimization and contributes to the reduction in the integration error of the relative position. Experiments with an unmanned aerial vehicle showed that by modifying the cycle slip using the proposed method, the vehicle trajectory could be estimated with an accuracy of 5 to 30 cm using only a single GNSS receiver, without using any other external data or sensors.
Abstract:A global navigation satellite system (GNSS) is a sensor that can acquire 3D position and velocity in an earth-fixed coordinate system and is widely used for outdoor position estimation of robots and vehicles. Various GNSS/inertial measurement unit (IMU) integration methods have been proposed to improve the accuracy and availability of GNSS positioning. However, all of them require the addition of a 3D attitude to the estimated state in order to fuse the IMU data. This study proposes a new optimization-based positioning method for combining GNSS and IMU that does not require attitude estimation. The proposed method uses two types of constraints: one is a constraint between states using only the magnitude of the 3D acceleration observed by an accelerometer, and the other is a constraint on the angle between the velocity vectors using the amount of angular change by a gyroscope. The evaluation results with simulation data show that the proposed method maintains the position estimation accuracy even when the IMU mounting position error increases and improves the accuracy when the GNSS observations contain multipath errors or missing data. The proposed method could improve the positioning accuracy in experiments using IMUs acquired in real environments.