Abstract:In this paper, we propose a method that extends the query-based object detection model, DETR, to spatio-temporal action detection, which requires maintaining temporal consistency in videos. Our proposed method applies DETR to each frame and uses feature shift to incorporate temporal information. However, DETR's object queries in each frame may correspond to different objects, making a simple feature shift ineffective. To overcome this issue, we propose query matching across different frames, ensuring that queries for the same object are matched and used for the feature shift. Experimental results show that performance on the JHMDB21 dataset improves significantly when query features are shifted using the proposed query matching.
Abstract:In the design of action recognition models, the quality of videos in the dataset is an important issue, however the trade-off between the quality and performance is often ignored. In general, action recognition models are trained and tested on high-quality videos, but in actual situations where action recognition models are deployed, sometimes it might not be assumed that the input videos are of high quality. In this study, we report qualitative evaluations of action recognition models for the quality degradation associated with transcoding by JPEG and H.264/AVC. Experimental results are shown for evaluating the performance of pre-trained models on the transcoded validation videos of Kinetics400. The models are also trained on the transcoded training videos. From these results, we quantitatively show the degree of degradation of the model performance with respect to the degradation of the video quality.
Abstract:In this paper, we propose a multi-domain learning model for action recognition. The proposed method inserts domain-specific adapters between layers of domain-independent layers of a backbone network. Unlike a multi-head network that switches classification heads only, our model switches not only the heads, but also the adapters for facilitating to learn feature representations universal to multiple domains. Unlike prior works, the proposed method is model-agnostic and doesn't assume model structures unlike prior works. Experimental results on three popular action recognition datasets (HMDB51, UCF101, and Kinetics-400) demonstrate that the proposed method is more effective than a multi-head architecture and more efficient than separately training models for each domain.