Abstract:As large language models continue to advance in Artificial Intelligence (AI), text generation systems have been shown to suffer from a problematic phenomenon termed often as "hallucination." However, with AI's increasing presence across various domains including medicine, concerns have arisen regarding the use of the term itself. In this study, we conducted a systematic review to identify papers defining "AI hallucination" across fourteen databases. We present and analyze definitions obtained across all databases, categorize them based on their applications, and extract key points within each category. Our results highlight a lack of consistency in how the term is used, but also help identify several alternative terms in the literature. We discuss implications of these and call for a more unified effort to bring consistency to an important contemporary AI issue that can affect multiple domains significantly.
Abstract:Graph representations for real-world social networks in the past have missed two important elements: the multiplexity of connections as well as representing time. To this end, in this paper, we present a new dynamic heterogeneous graph representation for social networks which includes time in every single component of the graph, i.e., nodes and edges, each of different types that captures heterogeneity. We illustrate the power of this representation by presenting four time-dependent queries and deep learning problems that cannot easily be handled in conventional homogeneous graph representations commonly used. As a proof of concept we present a detailed representation of a new social media platform (Steemit), which we use to illustrate both the dynamic querying capability as well as prediction tasks using graph neural networks (GNNs). The results illustrate the power of the dynamic heterogeneous graph representation to model social networks. Given that this is a relatively understudied area we also illustrate opportunities for future work in query optimization as well as new dynamic prediction tasks on heterogeneous graph structures.
Abstract:Automatic evaluation of the retinal fundus image is emerging as one of the most important tools for early detection and treatment of progressive eye diseases like Glaucoma. Glaucoma results to a progressive degeneration of vision and is characterized by the deformation of the shape of optic cup and the degeneration of the blood vessels resulting in the formation of a notch along the neuroretinal rim. In this paper, we propose a deep learning-based pipeline for automatic segmentation of optic disc (OD) and optic cup (OC) regions from Digital Fundus Images (DFIs), thereby extracting distinct features necessary for prediction of Glaucoma. This methodology has utilized focal notch analysis of neuroretinal rim along with cup-to-disc ratio values as classifying parameters to enhance the accuracy of Computer-aided design (CAD) systems in analyzing glaucoma. Support Vector-based Machine Learning algorithm is used for classification, which classifies DFIs as Glaucomatous or Normal based on the extracted features. The proposed pipeline was evaluated on the freely available DRISHTI-GS dataset with a resultant accuracy of 93.33% for detecting Glaucoma from DFIs.
Abstract:Deep Learning networks have established themselves as providing state of art performance for semantic segmentation. These techniques are widely applied specifically to medical detection, segmentation and classification. The advent of the U-Net based architecture has become particularly popular for this application. In this paper we present the Dense Recurrent Residual Convolutional Neural Network(Dense R2U CNN) which is a synthesis of Recurrent CNN, Residual Network and Dense Convolutional Network based on the U-Net model architecture. The residual unit helps training deeper network, while the dense recurrent layers enhances feature propagation needed for segmentation. The proposed model tested on the benchmark Lung Lesion dataset showed better performance on segmentation tasks than its equivalent models.
Abstract:As organizations increasingly rely on professionally oriented networks such as LinkedIn (the largest such social network) for building business connections, there is increasing value in having one's profile noticed within the network. As this value increases, so does the temptation to misuse the network for unethical purposes. Fake profiles have an adverse effect on the trustworthiness of the network as a whole, and can represent significant costs in time and effort in building a connection based on fake information. Unfortunately, fake profiles are difficult to identify. Approaches have been proposed for some social networks; however, these generally rely on data that are not publicly available for LinkedIn profiles. In this research, we identify the minimal set of profile data necessary for identifying fake profiles in LinkedIn, and propose an appropriate data mining approach for fake profile identification. We demonstrate that, even with limited profile data, our approach can identify fake profiles with 87% accuracy and 94% True Negative Rate, which is comparable to the results obtained based on larger data sets and more expansive profile information. Further, when compared to approaches using similar amounts and types of data, our method provides an improvement of approximately 14% accuracy.