Abstract:Managing the threat posed by malware requires accurate detection and classification techniques. Traditional detection strategies, such as signature scanning, rely on manual analysis of malware to extract relevant features, which is labor intensive and requires expert knowledge. Function call graphs consist of a set of program functions and their inter-procedural calls, providing a rich source of information that can be leveraged to classify malware without the labor intensive feature extraction step of traditional techniques. In this research, we treat malware classification as a graph classification problem. Based on Local Degree Profile features, we train a wide range of Graph Neural Network (GNN) architectures to generate embeddings which we then classify. We find that our best GNN models outperform previous comparable research involving the well-known MalNet-Tiny Android malware dataset. In addition, our GNN models do not suffer from the overfitting issues that commonly afflict non-GNN techniques, although GNN models require longer training times.
Abstract:Spam can be defined as unsolicited bulk email. In an effort to evade text-based filters, spammers sometimes embed spam text in an image, which is referred to as image spam. In this research, we consider the problem of image spam detection, based on image analysis. We apply convolutional neural networks (CNN) to this problem, we compare the results obtained using CNNs to other machine learning techniques, and we compare our results to previous related work. We consider both real-world image spam and challenging image spam-like datasets. Our results improve on previous work by employing CNNs based on a novel feature set consisting of a combination of the raw image and Canny edges.