Abstract:When engaging in collaborative tasks, humans efficiently exploit the semantic structure of a conversation to optimize verbal and nonverbal interactions. But in recent "language to code" or "language to action" models, this information is lacking. We show how incorporating the prior discourse and nonlinguistic context of a conversation situated in a nonlinguistic environment can improve the "language to action" component of such interactions. We fine tune an LLM to predict actions based on prior context; our model, NeBuLa, doubles the net-action F1 score over the baseline on this task of Jayannavar et al.(2020). We also investigate our model's ability to construct shapes and understand location descriptions using a synthetic dataset.
Abstract:This paper provides the first discourse parsing experiments with a large language model (LLM) finetuned on corpora annotated in the style of SDRT (Asher, 1993; Asher and Lascarides, 2003). The result is a discourse parser, LLaMIPa (LLaMA Incremental Parser), which is able to more fully exploit discourse context, leading to substantial performance gains over approaches that use encoder-only models to provide local, context-sensitive representations of discourse units. Furthermore, it is able to process discourse data incrementally, which is essential for the eventual use of discourse information in downstream tasks.