Abstract:Approximate unlearning has gained popularity as an approach to efficiently update an LLM so that it behaves (roughly) as if it was not trained on a subset of data to begin with. However, existing methods are brittle in practice and can easily be attacked to reveal supposedly unlearned information. To alleviate issues with approximate unlearning, we instead propose SIFT-Masks (SIgn-Fixed Tuning-Masks), an exact unlearning method based on model merging. SIFT-Masks addresses two key limitations of standard model merging: (1) merging a large number of tasks can severely harm utility; and (2) methods that boost utility by sharing extra information across tasks make exact unlearning prohibitively expensive. SIFT-Masks solves these issues by (1) applying local masks to recover task-specific performance; and (2) constraining finetuning to align with a global sign vector as a lightweight approach to determine masks independently before merging. Across four settings where we merge up to 500 models, SIFT-Masks improves accuracy by 5-80% over naive merging and uses up to 250x less compute for exact unlearning compared to other merging baselines.
Abstract:Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy. One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately, which results in saving management and communication resources. Despite the promising advancements in decentralized FL, it may reduce model generalizability due to lacking a global model. In this scenario, managing data and model heterogeneity among clients becomes a crucial problem, which poses a unique challenge that must be overcome: How can every client's local model learn generalizable representation in a decentralized manner? To address this challenge, we propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA. Based on the theory of domain adaptation and Knowledge Distillation (KD), we theoretically and empirically show that synthesizing global anchors based on raw data distribution facilitates mutual knowledge transfer. We further design two effective regularization terms for local training: 1) REG loss that regularizes the distribution of the client's latent embedding with the anchors and 2) KD loss that enables clients to learn from others. Through extensive experiments on diverse client data distributions, we showcase the effectiveness of DeSA in enhancing both inter- and intra-domain accuracy of each client.