Abstract:Causal discovery outputs a causal structure, represented by a graph, from observed data. For time series data, there is a variety of methods, however, it is difficult to evaluate these on real data as realistic use cases very rarely come with a known causal graph to which output can be compared. In this paper, we present a dataset from an industrial subsystem at the European Spallation Source along with its causal graph which has been constructed from expert knowledge. This provides a testbed for causal discovery from time series observations of complex systems, and we believe this can help inform the development of causal discovery methodology.
Abstract:Interacting systems of events may exhibit cascading behavior where events tend to be temporally clustered. While the cascades themselves may be obvious from the data, it is important to understand which states of the system trigger them. For this purpose, we propose a modeling framework based on continuous-time Bayesian networks (CTBNs) to analyze cascading behavior in complex systems. This framework allows us to describe how events propagate through the system and to identify likely sentry states, that is, system states that may lead to imminent cascading behavior. Moreover, CTBNs have a simple graphical representation and provide interpretable outputs, both of which are important when communicating with domain experts. We also develop new methods for knowledge extraction from CTBNs and we apply the proposed methodology to a data set of alarms in a large industrial system.