Abstract:There has been a growing utilization of industrial robots as complementary collaborators for human workers in re-manufacturing sites. Such a human-robot collaboration (HRC) aims to assist human workers in improving the flexibility and efficiency of labor-intensive tasks. In this paper, we propose a human-aware motion planning framework for HRC to effectively compute collision-free motions for manipulators when conducting collaborative tasks with humans. We employ a neural human motion prediction model to enable proactive planning for manipulators. Particularly, rather than blindly trusting and utilizing predicted human trajectories in the manipulator planning, we quantify uncertainties of the neural prediction model to further ensure human safety. Moreover, we integrate the uncertainty-aware prediction into a graph that captures key workspace elements and illustrates their interconnections. Then a graph neural network is leveraged to operate on the constructed graph. Consequently, robot motion planning considers both the dependencies among all the elements in the workspace and the potential influence of future movements of human workers. We experimentally validate the proposed planning framework using a 6-degree-of-freedom manipulator in a shared workspace where a human is performing disassembling tasks. The results demonstrate the benefits of our approach in terms of improving the smoothness and safety of HRC. A brief video introduction of this work is available as the supplemental materials.
Abstract:This paper presents a novel knowledge-informed graph neural planner (KG-Planner) to address the challenge of efficiently planning collision-free motions for robots in high-dimensional spaces, considering both static and dynamic environments involving humans. Unlike traditional motion planners that struggle with finding a balance between efficiency and optimality, the KG-Planner takes a different approach. Instead of relying solely on a neural network or imitating the motions of an oracle planner, our KG-Planner integrates explicit physical knowledge from the workspace. The integration of knowledge has two key aspects: (1) we present an approach to design a graph that can comprehensively model the workspace's compositional structure. The designed graph explicitly incorporates critical elements such as robot joints, obstacles, and their interconnections. This representation allows us to capture the intricate relationships between these elements. (2) We train a Graph Neural Network (GNN) that excels at generating nearly optimal robot motions. In particular, the GNN employs a layer-wise propagation rule to facilitate the exchange and update of information among workspace elements based on their connections. This propagation emphasizes the influence of these elements throughout the planning process. To validate the efficacy and efficiency of our KG-Planner, we conduct extensive experiments in both static and dynamic environments. These experiments include scenarios with and without human workers. The results of our approach are compared against existing methods, showcasing the superior performance of the KG-Planner. A short video introduction of this work is available (video link provided in the paper).
Abstract:Visual inspection is predominantly used to evaluate the state of civil structures, but recent developments in unmanned aerial vehicles (UAVs) and artificial intelligence have increased the speed, safety, and reliability of the inspection process. In this study, we develop a semantic segmentation network based on vision transformers and Laplacian pyramids scaling networks for efficiently parsing high-resolution visual inspection images. The massive amounts of collected high-resolution images during inspections can slow down the investigation efforts. And while there have been extensive studies dedicated to the use of deep learning models for damage segmentation, processing high-resolution visual data can pose major computational difficulties. Traditionally, images are either uniformly downsampled or partitioned to cope with computational demands. However, the input is at risk of losing local fine details, such as thin cracks, or global contextual information. Inspired by super-resolution architectures, our vision transformer model learns to resize high-resolution images and masks to retain both the valuable local features and the global semantics without sacrificing computational efficiency. The proposed framework has been evaluated through comprehensive experiments on a dataset of bridge inspection report images using multiple metrics for pixel-wise materials detection.