Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) is regarded as one of the key techniques to enhance the performance of future wireless communications. Different from regular MIMO, the XL-MIMO shifts part of the communication region from the far field to the near field, where the spherical-wave channel model cannot be accurately approximated by the commonly-adopted planar-wave channel model. As a result, the well-explored far-field beamspace is unsuitable for near-field communications, thereby requiring the exploration of specialized near-field beamspace. In this article, we investigate the near-field communications for XL-MIMO from the perspective of beamspace. Given the spherical wavefront characteristics of the near-field channels, we first map the antenna space to the near-field beamspace with the fractional Fourier transform. Then, we divide the near-field beamspace into three parts, including high mainlobe, low mainlobe, and sidelobe, and provide a comprehensive analysis of these components. Based on the analysis, we demonstrate the advantages of the near-field beamspace over the existing methods. Finally, we point out several applications of the near-field beamspace and highlight some potential directions for future study in the near-field beamspace.
Abstract:This paper considers near-field multiuser communications based on sparse arrays (SAs). First, for the uniform SAs (USAs), we analyze the beam gains of channel steering vectors, which shows that increasing the antenna spacings can effectively improve the spatial resolution of the antenna arrays to enhance the sum rate of multiuser communications. Then, we investigate nonuniform SAs (NSAs) to mitigate the high multiuser interference from the grating lobes of the USAs. To maximize the sum rate of near-field multiuser communications, we optimize the antenna positions of the NSAs, where a successive convex approximation-based antenna position optimization algorithm is proposed. Moreover, we find that the channels of both the USAs and the NSAs show uniform sparsity in the defined surrogate distance-angle (SD-A) domain. Based on the channel sparsity, an on-grid SD-A-domain orthogonal matching pursuit (SDA-OMP) algorithm is developed to estimate multiuser channels. To further improve the resolution of the SDA-OMP, we also design an off-grid SD-A-domain iterative super-resolution channel estimation algorithm. Simulation results demonstrate the superior performance of the proposed methods.
Abstract:This paper investigates beam training for extremely large-scale multiple-input multiple-output systems. By considering both the near field and far field, a triple-refined hybrid-field beam training scheme is proposed, where high-accuracy estimates of channel parameters are obtained through three steps of progressive beam refinement. First, the hybrid-field beam gain (HFBG)-based first refinement method is developed. Based on the analysis of the HFBG, the first-refinement codebook is designed and the beam training is performed accordingly to narrow down the potential region of the channel path. Then, the maximum likelihood (ML)-based and principle of stationary phase (PSP)-based second refinement methods are developed. By exploiting the measurements of the beam training, the ML is used to estimate the channel parameters. To avoid the high computational complexity of ML, closed-form estimates of the channel parameters are derived according to the PSP. Moreover, the Gaussian approximation (GA)-based third refinement method is developed. The hybrid-field neighboring search is first performed to identify the potential region of the main lobe of the channel steering vector. Afterwards, by applying the GA, a least-squares estimator is developed to obtain the high-accuracy channel parameter estimation. Simulation results verify the effectiveness of the proposed scheme.
Abstract:In this paper, beam training and beam tracking are investigated for extremely large-scale multiple-input-multiple-output communication systems with partially-connected hybrid combining structures. Firstly, we propose a two-stage hybrid-field beam training scheme for both the near field and the far field. In the first stage, each subarray independently uses multiple far-field channel steering vectors to approximate near-field ones for analog combining. To find the codeword best fitting for the channel, digital combiners in the second stage are designed to combine the outputs of the analog combiners from the first stage. Then, based on the principle of stationary phase and the time-frequency duality, the expressions of subarray signals after analog combining are analytically derived and a beam refinement based on phase shifts of subarrays~(BRPSS) scheme with closed-form solutions is proposed for high-resolution channel parameter estimation. Moreover, a low-complexity near-field beam tracking scheme is developed, where the kinematic model is adopted to characterize the channel variations and the extended Kalman filter is exploited for beam tracking. Simulation results verify the effectiveness of the proposed schemes.
Abstract:This paper investigates an integrated sensing and communication (ISAC) system with reconfigurable intelligent surface (RIS). Our simultaneous beam training and target sensing (SBTTS) scheme enables the base station to perform beam training with the user terminals (UTs) and the RIS, and simultaneously to sense the targets. Based on our findings, the energy of the echoes from the RIS is accumulated in the angle-delay domain while that from the targets is accumulated in the Doppler-delay domain. The SBTTS scheme can distinguish the RIS from the targets with the mixed echoes from the RIS and the targets. Then we propose a positioning and array orientation estimation (PAOE) scheme for both the line-of-sight channels and the non-line-of-sight channels based on the beam training results of SBTTS by developing a low-complexity two-dimensional fast search algorithm. Based on the SBTTS and PAOE schemes, we further compute the angle-of-arrival and angle-of-departure for the channels between the RIS and the UTs by exploiting the geometry relationship to accomplish the beam alignment of the ISAC system. Simulation results verify the effectiveness of the proposed schemes.
Abstract:In this paper, multiuser beam training based on hierarchical codebook for millimeter wave massive multi-input multi-output is investigated, where the base station (BS) simultaneously performs beam training with multiple user equipments (UEs). For the UEs, an alternative minimization method with a closed-form expression (AMCF) is proposed to design the hierarchical codebook under the constant modulus constraint. To speed up the convergence of the AMCF, an initialization method based on Zadoff-Chu sequence is proposed. For the BS, a simultaneous multiuser beam training scheme based on an adaptively designed hierarchical codebook is proposed, where the codewords in the current layer of the codebook are designed according to the beam training results of the previous layer. The codewords at the BS are designed with multiple mainlobes, each covering a spatial region for one or more UEs. Simulation results verify the effectiveness of the proposed hierarchical codebook design schemes and show that the proposed multiuser beam training scheme can approach the performance of the beam sweeping but with significantly reduced beam training overhead.