Abstract:Quality inspection is a necessary task before putting any remote sensing image into practical application. However, traditional manual inspection methods suffer from low efficiency. Hence, we propose a novel two-step intelligent system for remote sensing image quality inspection that combines multiple models, which first performs image classification and then employs the most appropriate methods to localize various forms of quality problems in the image. Results demonstrate that the proposed method exhibits excellent performance and efficiency in remote sensing image quality inspection, surpassing the performance of those one-step methods. Furthermore, we conduct an initial exploration of the feasibility and potential of applying multimodal models to remote sensing image quality inspection.